Matches in SemOpenAlex for { <https://semopenalex.org/work/W147798326> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W147798326 abstract "In this mini-course we will go into the so-called Bloch-Fourier approach to understand homogenization of periodic structures. The aims are to state the main results with motivations, highlight various phenomena in the Fourier space and indicate possible gains over other methods. Main ideas will be given trying to avoid technicalities. It is fair to say that ever since the publication of the book [4], there is a renewed and vigorous activity in homogenization problems which form an important area of Applied Mathematics. In order to tackle the key questions in homogenization, several methods have been devised and there is an enormous literature on the subject. Our goal in these series of lectures is to address certain basic questions which we consider to be fundamental and to present a way to answer them which can be classified inside category (B) below. Homogenization methods can be broadly categorized as follows: (A) Physical space methods, (B) Fourier space methods, and (C) Phase space methods. There are many methods falling in the class (A) and let us mention some successful ones : Multiscale expansion [4], Multiscale convergence [1], [21], Method of oscillating test functions [19], [26], Compensated Compactness [20], Gamma Convergence [11] and so on. Though they have varying domains of applicability, they have some common characteristics. An insight into the kind of oscillations produced by the medium is gained and this information is used in some way or the other (ansatz, test functions, ...). In order to study partial differential equations with variable coefficients, techniques of pseudo-differential operators and Fourier integral operators have been developed [15]. These phase space theories provide tools suitable to study the behaviour of in-homogeneous media which are qualitatively similar to homogeneous ones and their small perturbations. To deal with heterogeneities possessing qualitatively different properties, we need more sophisticated tools such as H-measures [25], micro-local defect measures [13], Wigner measures [14], [16] and their generalizations and refinements (see [18]). In the middle ground between the classes (A) and (C) lie the methods based purely on Fourier techniques and this mini-course address them. In problems involving oscillations, it is natural to seek methods based on Fourier space and this general outlook led us to look for tools suitable to describe oscillations produced by heterogeneities in the Fourier space. My intention is to present some of them and illustrate how they can be effectively used to study classical homogenization problems. Though there are many aspects of homogenization, we will confine ourselves to some of them which I consider to be fundamental. Using the tools of Fourier space, one simple" @default.
- W147798326 created "2016-06-24" @default.
- W147798326 creator A5075528538 @default.
- W147798326 date "2004-01-01" @default.
- W147798326 modified "2023-09-23" @default.
- W147798326 title "Bloch-Fourier Approach to Classical Homogenization Problems" @default.
- W147798326 cites W1690139326 @default.
- W147798326 cites W1825324415 @default.
- W147798326 cites W1979015208 @default.
- W147798326 cites W1983797262 @default.
- W147798326 cites W1989121669 @default.
- W147798326 cites W1997844687 @default.
- W147798326 cites W2017235261 @default.
- W147798326 cites W2027239222 @default.
- W147798326 cites W2029887342 @default.
- W147798326 cites W2045462689 @default.
- W147798326 cites W2051465055 @default.
- W147798326 cites W2063727277 @default.
- W147798326 cites W2066125816 @default.
- W147798326 cites W2076666589 @default.
- W147798326 cites W2083916485 @default.
- W147798326 cites W2088049925 @default.
- W147798326 cites W2091659473 @default.
- W147798326 cites W2103729522 @default.
- W147798326 cites W2105567754 @default.
- W147798326 cites W2116801612 @default.
- W147798326 cites W2517666786 @default.
- W147798326 cites W57709628 @default.
- W147798326 cites W656727543 @default.
- W147798326 hasPublicationYear "2004" @default.
- W147798326 type Work @default.
- W147798326 sameAs 147798326 @default.
- W147798326 citedByCount "0" @default.
- W147798326 crossrefType "journal-article" @default.
- W147798326 hasAuthorship W147798326A5075528538 @default.
- W147798326 hasConcept C102519508 @default.
- W147798326 hasConcept C130217890 @default.
- W147798326 hasConcept C130979935 @default.
- W147798326 hasConcept C134306372 @default.
- W147798326 hasConcept C18903297 @default.
- W147798326 hasConcept C199343813 @default.
- W147798326 hasConcept C203024314 @default.
- W147798326 hasConcept C207864730 @default.
- W147798326 hasConcept C2777686260 @default.
- W147798326 hasConcept C2778722038 @default.
- W147798326 hasConcept C28826006 @default.
- W147798326 hasConcept C33923547 @default.
- W147798326 hasConcept C37914503 @default.
- W147798326 hasConcept C71924100 @default.
- W147798326 hasConcept C86803240 @default.
- W147798326 hasConceptScore W147798326C102519508 @default.
- W147798326 hasConceptScore W147798326C130217890 @default.
- W147798326 hasConceptScore W147798326C130979935 @default.
- W147798326 hasConceptScore W147798326C134306372 @default.
- W147798326 hasConceptScore W147798326C18903297 @default.
- W147798326 hasConceptScore W147798326C199343813 @default.
- W147798326 hasConceptScore W147798326C203024314 @default.
- W147798326 hasConceptScore W147798326C207864730 @default.
- W147798326 hasConceptScore W147798326C2777686260 @default.
- W147798326 hasConceptScore W147798326C2778722038 @default.
- W147798326 hasConceptScore W147798326C28826006 @default.
- W147798326 hasConceptScore W147798326C33923547 @default.
- W147798326 hasConceptScore W147798326C37914503 @default.
- W147798326 hasConceptScore W147798326C71924100 @default.
- W147798326 hasConceptScore W147798326C86803240 @default.
- W147798326 hasLocation W1477983261 @default.
- W147798326 hasOpenAccess W147798326 @default.
- W147798326 hasPrimaryLocation W1477983261 @default.
- W147798326 hasRelatedWork W1531179327 @default.
- W147798326 hasRelatedWork W1575538570 @default.
- W147798326 hasRelatedWork W1769119508 @default.
- W147798326 hasRelatedWork W1974491198 @default.
- W147798326 hasRelatedWork W1978338014 @default.
- W147798326 hasRelatedWork W2011283659 @default.
- W147798326 hasRelatedWork W2032166025 @default.
- W147798326 hasRelatedWork W2034609005 @default.
- W147798326 hasRelatedWork W2056423538 @default.
- W147798326 hasRelatedWork W2090572018 @default.
- W147798326 hasRelatedWork W2123149424 @default.
- W147798326 hasRelatedWork W2901531768 @default.
- W147798326 hasRelatedWork W309390760 @default.
- W147798326 hasRelatedWork W3113891641 @default.
- W147798326 hasRelatedWork W3165093031 @default.
- W147798326 hasRelatedWork W342781889 @default.
- W147798326 hasRelatedWork W601812573 @default.
- W147798326 hasRelatedWork W1786651249 @default.
- W147798326 hasRelatedWork W2550947302 @default.
- W147798326 hasRelatedWork W288108455 @default.
- W147798326 isParatext "false" @default.
- W147798326 isRetracted "false" @default.
- W147798326 magId "147798326" @default.
- W147798326 workType "article" @default.