Matches in SemOpenAlex for { <https://semopenalex.org/work/W1477994318> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W1477994318 abstract "Memristor-based neural networks refer to the utilisation of memristors, the newly emerged nanoscale devices, in building neural networks.The memristor was first postulated by Leon Chua in 1971 as the fourth fundamental passive circuit element and experimentally validated by one of HP labs in 2008. Memristors, short for memory-resistor, have a peculiar memory effect which distinguishes them from resistors. By applying a bias voltage across it, the resistance of a memristor, namely memristance, is changed. In addition, the memristance is retained when the power supply is removed which demonstrates the non-volatility of the memristor.Memristor-based neural networks are currently being researched in order to replace complementary metal-oxide-semiconductor (CMOS) devices in neuromorphic circuits with memristors and to investigate their potential applications. Current research primarily focuses on the utilisation of memristors as synaptic connections between neurons, however in any application it may be possible to allow memristors to perform computation in a natural way which attempts to avoid additional CMOS devices. Examples of such methods utilised in neural networks are presented in this thesis, such as memristor-based cellular neural network (CNN) structures, the memristive spiking-time dependent plasticity (STDP) model and the exploration of their potential applications.This thesis presents manifold studies in the topic of memristor-based neural networks from theories and feasibility to approaches to implementations. Studies are divided into two parts which are the utilisation of memristors in non-spiking neural networks and spiking neural networks (SNNs). At the beginning of the thesis, fundamentals of neural networks and memristors are explored with the analysis of the physical properties and $v-i$ behaviour of memristors. In the studies of memristor-based non-spiking neural networks, a staircase memristor model is presented based on memristors which have multi-level resistive states and the delayed-switching effect. This model is adapted to CNNs and echo state networks (ESNs) as applications that benefit from memristive implementations. In the studies of memristor-based SNNs, a trace-based memristive STDP model is proposed and discussed to overcome the incompatibility issues of the previous model with all-to-all spike interaction. The work also presents applications of the trace-based memristive model in associative learning with retention loss and supervised learning.The computational results of experiments with different applications have shown that memristor-based neural networks will be advantageous in building synchronous or asynchronous parallel neuromorphic systems. The work presents several new findings on memristor modelling, memristor-based neural network structures and memristor-based associative learning. These studies address unexplored research areas in the context of memristor-based neural networks to the best of our knowledge, and therefore form original contributions." @default.
- W1477994318 created "2016-06-24" @default.
- W1477994318 creator A5034381445 @default.
- W1477994318 date "2014-12-01" @default.
- W1477994318 modified "2023-09-23" @default.
- W1477994318 title "Memristor based neural networks : feasibility, theories and approaches" @default.
- W1477994318 hasPublicationYear "2014" @default.
- W1477994318 type Work @default.
- W1477994318 sameAs 1477994318 @default.
- W1477994318 citedByCount "0" @default.
- W1477994318 crossrefType "dissertation" @default.
- W1477994318 hasAuthorship W1477994318A5034381445 @default.
- W1477994318 hasConcept C11731999 @default.
- W1477994318 hasConcept C118524514 @default.
- W1477994318 hasConcept C119599485 @default.
- W1477994318 hasConcept C127413603 @default.
- W1477994318 hasConcept C137488568 @default.
- W1477994318 hasConcept C150072547 @default.
- W1477994318 hasConcept C151927369 @default.
- W1477994318 hasConcept C154945302 @default.
- W1477994318 hasConcept C165801399 @default.
- W1477994318 hasConcept C182019814 @default.
- W1477994318 hasConcept C1895703 @default.
- W1477994318 hasConcept C24326235 @default.
- W1477994318 hasConcept C41008148 @default.
- W1477994318 hasConcept C46362747 @default.
- W1477994318 hasConcept C50644808 @default.
- W1477994318 hasConceptScore W1477994318C11731999 @default.
- W1477994318 hasConceptScore W1477994318C118524514 @default.
- W1477994318 hasConceptScore W1477994318C119599485 @default.
- W1477994318 hasConceptScore W1477994318C127413603 @default.
- W1477994318 hasConceptScore W1477994318C137488568 @default.
- W1477994318 hasConceptScore W1477994318C150072547 @default.
- W1477994318 hasConceptScore W1477994318C151927369 @default.
- W1477994318 hasConceptScore W1477994318C154945302 @default.
- W1477994318 hasConceptScore W1477994318C165801399 @default.
- W1477994318 hasConceptScore W1477994318C182019814 @default.
- W1477994318 hasConceptScore W1477994318C1895703 @default.
- W1477994318 hasConceptScore W1477994318C24326235 @default.
- W1477994318 hasConceptScore W1477994318C41008148 @default.
- W1477994318 hasConceptScore W1477994318C46362747 @default.
- W1477994318 hasConceptScore W1477994318C50644808 @default.
- W1477994318 hasLocation W14779943181 @default.
- W1477994318 hasOpenAccess W1477994318 @default.
- W1477994318 hasPrimaryLocation W14779943181 @default.
- W1477994318 hasRelatedWork W178381729 @default.
- W1477994318 hasRelatedWork W1995314879 @default.
- W1477994318 hasRelatedWork W2051601318 @default.
- W1477994318 hasRelatedWork W2057805196 @default.
- W1477994318 hasRelatedWork W2171554252 @default.
- W1477994318 hasRelatedWork W2481201146 @default.
- W1477994318 hasRelatedWork W2541141714 @default.
- W1477994318 hasRelatedWork W2580956692 @default.
- W1477994318 hasRelatedWork W2588507724 @default.
- W1477994318 hasRelatedWork W2894137312 @default.
- W1477994318 hasRelatedWork W2895545069 @default.
- W1477994318 hasRelatedWork W2903854842 @default.
- W1477994318 hasRelatedWork W2912625718 @default.
- W1477994318 hasRelatedWork W2943488945 @default.
- W1477994318 hasRelatedWork W2982577432 @default.
- W1477994318 hasRelatedWork W3098316772 @default.
- W1477994318 hasRelatedWork W3107346677 @default.
- W1477994318 hasRelatedWork W3196616645 @default.
- W1477994318 hasRelatedWork W854337474 @default.
- W1477994318 hasRelatedWork W2562180995 @default.
- W1477994318 isParatext "false" @default.
- W1477994318 isRetracted "false" @default.
- W1477994318 magId "1477994318" @default.
- W1477994318 workType "dissertation" @default.