Matches in SemOpenAlex for { <https://semopenalex.org/work/W1478162562> ?p ?o ?g. }
- W1478162562 endingPage "489" @default.
- W1478162562 startingPage "480" @default.
- W1478162562 abstract "AbstractIn the paper the recursive least squares method, in combining with general regression neural network, is applied for learning in a non-stationary environment. The orthogonal series-type kernel is applied to design the general regression neural networks. Sufficient conditions for convergence in probability are given and simulation results are presented.KeywordsIEEE TransactionMean Square ErrorRegression FunctionProbabilistic Neural NetworkGeneral Regression Neural NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W1478162562 created "2016-06-24" @default.
- W1478162562 creator A5035486559 @default.
- W1478162562 creator A5056212950 @default.
- W1478162562 date "2012-01-01" @default.
- W1478162562 modified "2023-09-26" @default.
- W1478162562 title "Learning in a Non-stationary Environment Using the Recursive Least Squares Method and Orthogonal-Series Type Regression Neural Network" @default.
- W1478162562 cites W1516848678 @default.
- W1478162562 cites W1551410756 @default.
- W1478162562 cites W1559218519 @default.
- W1478162562 cites W1966073935 @default.
- W1478162562 cites W1978646836 @default.
- W1478162562 cites W1979828038 @default.
- W1478162562 cites W1991520880 @default.
- W1478162562 cites W1997695673 @default.
- W1478162562 cites W1999736630 @default.
- W1478162562 cites W2018692286 @default.
- W1478162562 cites W2033287637 @default.
- W1478162562 cites W2036872905 @default.
- W1478162562 cites W2037305433 @default.
- W1478162562 cites W2061196395 @default.
- W1478162562 cites W2069353560 @default.
- W1478162562 cites W2077444112 @default.
- W1478162562 cites W2099141928 @default.
- W1478162562 cites W2109313211 @default.
- W1478162562 cites W2113027078 @default.
- W1478162562 cites W2124803969 @default.
- W1478162562 cites W2141801655 @default.
- W1478162562 cites W2149723649 @default.
- W1478162562 cites W2162803824 @default.
- W1478162562 cites W2166329516 @default.
- W1478162562 cites W231360518 @default.
- W1478162562 cites W327982598 @default.
- W1478162562 cites W72805253 @default.
- W1478162562 doi "https://doi.org/10.1007/978-3-642-31464-3_49" @default.
- W1478162562 hasPublicationYear "2012" @default.
- W1478162562 type Work @default.
- W1478162562 sameAs 1478162562 @default.
- W1478162562 citedByCount "0" @default.
- W1478162562 crossrefType "book-chapter" @default.
- W1478162562 hasAuthorship W1478162562A5035486559 @default.
- W1478162562 hasAuthorship W1478162562A5056212950 @default.
- W1478162562 hasConcept C105795698 @default.
- W1478162562 hasConcept C11413529 @default.
- W1478162562 hasConcept C118615104 @default.
- W1478162562 hasConcept C119857082 @default.
- W1478162562 hasConcept C143724316 @default.
- W1478162562 hasConcept C151406439 @default.
- W1478162562 hasConcept C151730666 @default.
- W1478162562 hasConcept C152877465 @default.
- W1478162562 hasConcept C154945302 @default.
- W1478162562 hasConcept C162324750 @default.
- W1478162562 hasConcept C185429906 @default.
- W1478162562 hasConcept C18903297 @default.
- W1478162562 hasConcept C200695384 @default.
- W1478162562 hasConcept C2777299769 @default.
- W1478162562 hasConcept C2777303404 @default.
- W1478162562 hasConcept C33923547 @default.
- W1478162562 hasConcept C41008148 @default.
- W1478162562 hasConcept C50522688 @default.
- W1478162562 hasConcept C50644808 @default.
- W1478162562 hasConcept C74193536 @default.
- W1478162562 hasConcept C83546350 @default.
- W1478162562 hasConcept C86803240 @default.
- W1478162562 hasConcept C9936470 @default.
- W1478162562 hasConceptScore W1478162562C105795698 @default.
- W1478162562 hasConceptScore W1478162562C11413529 @default.
- W1478162562 hasConceptScore W1478162562C118615104 @default.
- W1478162562 hasConceptScore W1478162562C119857082 @default.
- W1478162562 hasConceptScore W1478162562C143724316 @default.
- W1478162562 hasConceptScore W1478162562C151406439 @default.
- W1478162562 hasConceptScore W1478162562C151730666 @default.
- W1478162562 hasConceptScore W1478162562C152877465 @default.
- W1478162562 hasConceptScore W1478162562C154945302 @default.
- W1478162562 hasConceptScore W1478162562C162324750 @default.
- W1478162562 hasConceptScore W1478162562C185429906 @default.
- W1478162562 hasConceptScore W1478162562C18903297 @default.
- W1478162562 hasConceptScore W1478162562C200695384 @default.
- W1478162562 hasConceptScore W1478162562C2777299769 @default.
- W1478162562 hasConceptScore W1478162562C2777303404 @default.
- W1478162562 hasConceptScore W1478162562C33923547 @default.
- W1478162562 hasConceptScore W1478162562C41008148 @default.
- W1478162562 hasConceptScore W1478162562C50522688 @default.
- W1478162562 hasConceptScore W1478162562C50644808 @default.
- W1478162562 hasConceptScore W1478162562C74193536 @default.
- W1478162562 hasConceptScore W1478162562C83546350 @default.
- W1478162562 hasConceptScore W1478162562C86803240 @default.
- W1478162562 hasConceptScore W1478162562C9936470 @default.
- W1478162562 hasLocation W14781625621 @default.
- W1478162562 hasOpenAccess W1478162562 @default.
- W1478162562 hasPrimaryLocation W14781625621 @default.
- W1478162562 hasRelatedWork W1973268799 @default.
- W1478162562 hasRelatedWork W1975201178 @default.
- W1478162562 hasRelatedWork W1977726304 @default.
- W1478162562 hasRelatedWork W2007006924 @default.
- W1478162562 hasRelatedWork W2016421154 @default.
- W1478162562 hasRelatedWork W2021386313 @default.
- W1478162562 hasRelatedWork W2054722299 @default.