Matches in SemOpenAlex for { <https://semopenalex.org/work/W1480498022> ?p ?o ?g. }
- W1480498022 endingPage "168" @default.
- W1480498022 startingPage "65" @default.
- W1480498022 abstract "Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online3." @default.
- W1480498022 created "2016-06-24" @default.
- W1480498022 creator A5020938291 @default.
- W1480498022 creator A5032181488 @default.
- W1480498022 creator A5035449645 @default.
- W1480498022 date "2009-01-01" @default.
- W1480498022 modified "2023-10-16" @default.
- W1480498022 title "Color Spaces and Image Segmentation" @default.
- W1480498022 cites W1522384854 @default.
- W1480498022 cites W1832323353 @default.
- W1480498022 cites W1964389324 @default.
- W1480498022 cites W1964628873 @default.
- W1480498022 cites W1964873321 @default.
- W1480498022 cites W1966992150 @default.
- W1480498022 cites W1971707777 @default.
- W1480498022 cites W1977516301 @default.
- W1480498022 cites W1979432452 @default.
- W1480498022 cites W1979999026 @default.
- W1480498022 cites W1990173365 @default.
- W1480498022 cites W1996075740 @default.
- W1480498022 cites W2000063966 @default.
- W1480498022 cites W2002193710 @default.
- W1480498022 cites W2006166470 @default.
- W1480498022 cites W2008840310 @default.
- W1480498022 cites W2010560725 @default.
- W1480498022 cites W2021049654 @default.
- W1480498022 cites W2024168391 @default.
- W1480498022 cites W2027841141 @default.
- W1480498022 cites W2034076462 @default.
- W1480498022 cites W2037563221 @default.
- W1480498022 cites W2042784871 @default.
- W1480498022 cites W2048087021 @default.
- W1480498022 cites W2054451916 @default.
- W1480498022 cites W2055269817 @default.
- W1480498022 cites W2061957709 @default.
- W1480498022 cites W2064369665 @default.
- W1480498022 cites W2067191022 @default.
- W1480498022 cites W2071994538 @default.
- W1480498022 cites W2073105997 @default.
- W1480498022 cites W2076640017 @default.
- W1480498022 cites W2077145165 @default.
- W1480498022 cites W2082216877 @default.
- W1480498022 cites W2087402007 @default.
- W1480498022 cites W2088624179 @default.
- W1480498022 cites W2091974946 @default.
- W1480498022 cites W2092572597 @default.
- W1480498022 cites W2093363711 @default.
- W1480498022 cites W2104019579 @default.
- W1480498022 cites W2106111212 @default.
- W1480498022 cites W2109155353 @default.
- W1480498022 cites W2111991188 @default.
- W1480498022 cites W2112973039 @default.
- W1480498022 cites W2114970735 @default.
- W1480498022 cites W2115434498 @default.
- W1480498022 cites W2116367486 @default.
- W1480498022 cites W2119823327 @default.
- W1480498022 cites W2121494337 @default.
- W1480498022 cites W2122067266 @default.
- W1480498022 cites W2122410868 @default.
- W1480498022 cites W2126969152 @default.
- W1480498022 cites W2133132416 @default.
- W1480498022 cites W2136557885 @default.
- W1480498022 cites W2136704614 @default.
- W1480498022 cites W2145433796 @default.
- W1480498022 cites W2147469781 @default.
- W1480498022 cites W2151393448 @default.
- W1480498022 cites W2157405224 @default.
- W1480498022 cites W2161709780 @default.
- W1480498022 cites W2162765447 @default.
- W1480498022 cites W2166277517 @default.
- W1480498022 cites W2168495030 @default.
- W1480498022 cites W2171678033 @default.
- W1480498022 cites W2173710661 @default.
- W1480498022 cites W2174657536 @default.
- W1480498022 cites W2914885528 @default.
- W1480498022 cites W3142006300 @default.
- W1480498022 cites W3162111397 @default.
- W1480498022 cites W4241443289 @default.
- W1480498022 doi "https://doi.org/10.1016/s1076-5670(07)00402-8" @default.
- W1480498022 hasPublicationYear "2009" @default.
- W1480498022 type Work @default.
- W1480498022 sameAs 1480498022 @default.
- W1480498022 citedByCount "70" @default.
- W1480498022 countsByYear W14804980222012 @default.
- W1480498022 countsByYear W14804980222013 @default.
- W1480498022 countsByYear W14804980222014 @default.
- W1480498022 countsByYear W14804980222015 @default.
- W1480498022 countsByYear W14804980222016 @default.
- W1480498022 countsByYear W14804980222017 @default.
- W1480498022 countsByYear W14804980222018 @default.
- W1480498022 countsByYear W14804980222019 @default.
- W1480498022 countsByYear W14804980222020 @default.
- W1480498022 countsByYear W14804980222021 @default.
- W1480498022 countsByYear W14804980222022 @default.
- W1480498022 countsByYear W14804980222023 @default.
- W1480498022 crossrefType "book-chapter" @default.
- W1480498022 hasAuthorship W1480498022A5020938291 @default.
- W1480498022 hasAuthorship W1480498022A5032181488 @default.