Matches in SemOpenAlex for { <https://semopenalex.org/work/W148084514> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W148084514 endingPage "80" @default.
- W148084514 startingPage "65" @default.
- W148084514 abstract "AbstractIn this chapter,we have proposed an integrated methodology for electrocardiogram (ECG) based differentiation of arrhythmia and normal sinus rhythm using genetic algorithm optimized k-means clustering. Open source databases consisting of the MIT BIH arrhythmia and MIT BIH normal sinus rhythm data are used. The methodology consists of QRS-complex detection using the Pan-Tompkins algorithm, principal component analysis (PCA), and subsequent pattern classification using the k-means classifier, error back propagation neural network (EBPNN) classifier, and genetic algorithm optimized k-means clustering. The m-fold cross-validation scheme is used in choosing the training and testing sets for classification. The k-means classifier provides an average accuracy of 91.21 % over all folds, whereas EBPNN provides a greater average accuracy of 95.79 %. In the proposed method, the k-means classifier is optimized using the genetic algorithm (GA), and the accuracy of this classifier is 95.79 %, which is equal to that of EBPNN. In conclusion, the classification accuracy of simple unsupervised classifiers can be increased to near that of supervised classifiers by optimization using GA. The application of GA to other unsupervised algorithms to yield higher accuracy as a future direction is also observed. KeywordsElectrocardiogramPrincipal component analysisNeural networkGenetic algorithmMIT-BIH database" @default.
- W148084514 created "2016-06-24" @default.
- W148084514 creator A5009060919 @default.
- W148084514 creator A5022432777 @default.
- W148084514 creator A5049097093 @default.
- W148084514 creator A5086109759 @default.
- W148084514 date "2013-12-10" @default.
- W148084514 modified "2023-09-25" @default.
- W148084514 title "The Application of Genetic Algorithm for Unsupervised Classification of ECG" @default.
- W148084514 cites W1974192990 @default.
- W148084514 cites W1984605299 @default.
- W148084514 cites W1992419399 @default.
- W148084514 cites W2019885331 @default.
- W148084514 cites W2028054185 @default.
- W148084514 cites W2052494071 @default.
- W148084514 cites W2058665754 @default.
- W148084514 cites W2127510558 @default.
- W148084514 cites W2153233077 @default.
- W148084514 cites W2163430278 @default.
- W148084514 cites W4205686602 @default.
- W148084514 doi "https://doi.org/10.1007/978-3-642-40017-9_4" @default.
- W148084514 hasPublicationYear "2013" @default.
- W148084514 type Work @default.
- W148084514 sameAs 148084514 @default.
- W148084514 citedByCount "1" @default.
- W148084514 countsByYear W1480845142019 @default.
- W148084514 crossrefType "book-chapter" @default.
- W148084514 hasAuthorship W148084514A5009060919 @default.
- W148084514 hasAuthorship W148084514A5022432777 @default.
- W148084514 hasAuthorship W148084514A5049097093 @default.
- W148084514 hasAuthorship W148084514A5086109759 @default.
- W148084514 hasConcept C110083411 @default.
- W148084514 hasConcept C11413529 @default.
- W148084514 hasConcept C119857082 @default.
- W148084514 hasConcept C139532973 @default.
- W148084514 hasConcept C153180895 @default.
- W148084514 hasConcept C154945302 @default.
- W148084514 hasConcept C27438332 @default.
- W148084514 hasConcept C41008148 @default.
- W148084514 hasConcept C50644808 @default.
- W148084514 hasConcept C52620605 @default.
- W148084514 hasConcept C73555534 @default.
- W148084514 hasConcept C8880873 @default.
- W148084514 hasConcept C95623464 @default.
- W148084514 hasConceptScore W148084514C110083411 @default.
- W148084514 hasConceptScore W148084514C11413529 @default.
- W148084514 hasConceptScore W148084514C119857082 @default.
- W148084514 hasConceptScore W148084514C139532973 @default.
- W148084514 hasConceptScore W148084514C153180895 @default.
- W148084514 hasConceptScore W148084514C154945302 @default.
- W148084514 hasConceptScore W148084514C27438332 @default.
- W148084514 hasConceptScore W148084514C41008148 @default.
- W148084514 hasConceptScore W148084514C50644808 @default.
- W148084514 hasConceptScore W148084514C52620605 @default.
- W148084514 hasConceptScore W148084514C73555534 @default.
- W148084514 hasConceptScore W148084514C8880873 @default.
- W148084514 hasConceptScore W148084514C95623464 @default.
- W148084514 hasLocation W1480845141 @default.
- W148084514 hasOpenAccess W148084514 @default.
- W148084514 hasPrimaryLocation W1480845141 @default.
- W148084514 hasRelatedWork W1970980362 @default.
- W148084514 hasRelatedWork W1984605299 @default.
- W148084514 hasRelatedWork W1985637683 @default.
- W148084514 hasRelatedWork W2106180576 @default.
- W148084514 hasRelatedWork W2119723504 @default.
- W148084514 hasRelatedWork W2125654608 @default.
- W148084514 hasRelatedWork W2127740478 @default.
- W148084514 hasRelatedWork W2197216032 @default.
- W148084514 hasRelatedWork W2303153816 @default.
- W148084514 hasRelatedWork W2541668478 @default.
- W148084514 hasRelatedWork W2756047138 @default.
- W148084514 hasRelatedWork W2774421554 @default.
- W148084514 hasRelatedWork W2794332717 @default.
- W148084514 hasRelatedWork W2883267573 @default.
- W148084514 hasRelatedWork W2904420113 @default.
- W148084514 hasRelatedWork W2961150431 @default.
- W148084514 hasRelatedWork W3113836932 @default.
- W148084514 hasRelatedWork W3133489511 @default.
- W148084514 hasRelatedWork W798749867 @default.
- W148084514 hasRelatedWork W1818059179 @default.
- W148084514 isParatext "false" @default.
- W148084514 isRetracted "false" @default.
- W148084514 magId "148084514" @default.
- W148084514 workType "book-chapter" @default.