Matches in SemOpenAlex for { <https://semopenalex.org/work/W1480931433> ?p ?o ?g. }
- W1480931433 abstract "Narrative text is a useful way of identifying injury circumstances from the routine emergency department data collections. Automatically classifying narratives based on machine learning techniques is a promising technique, which can consequently reduce the tedious manual classification process. Existing works focus on using Naive Bayes which does not always offer the best performance. This paper proposes the Matrix Factorization approaches along with a learning enhancement process for this task. The results are compared with the performance of various other classification approaches. The impact on the classification results from the parameters setting during the classification of a medical text dataset is discussed. With the selection of right dimension k, Non Negative Matrix Factorization-model method achieves 10 CV accuracy of 0.93." @default.
- W1480931433 created "2016-06-24" @default.
- W1480931433 creator A5015158048 @default.
- W1480931433 creator A5073669975 @default.
- W1480931433 creator A5078143614 @default.
- W1480931433 date "2015-05-20" @default.
- W1480931433 modified "2023-09-29" @default.
- W1480931433 title "Injury narrative text classification using factorization model" @default.
- W1480931433 cites W14984678 @default.
- W1480931433 cites W1687943832 @default.
- W1480931433 cites W1975851530 @default.
- W1480931433 cites W1997120656 @default.
- W1480931433 cites W1998513489 @default.
- W1480931433 cites W2043679416 @default.
- W1480931433 cites W2052787275 @default.
- W1480931433 cites W2060235240 @default.
- W1480931433 cites W2066792529 @default.
- W1480931433 cites W2076255748 @default.
- W1480931433 cites W2083449552 @default.
- W1480931433 cites W2091118026 @default.
- W1480931433 cites W2118020653 @default.
- W1480931433 cites W2136152928 @default.
- W1480931433 cites W2148179583 @default.
- W1480931433 cites W2157054434 @default.
- W1480931433 cites W2158444075 @default.
- W1480931433 cites W2408929585 @default.
- W1480931433 doi "https://doi.org/10.1186/1472-6947-15-s1-s5" @default.
- W1480931433 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4460654" @default.
- W1480931433 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26043671" @default.
- W1480931433 hasPublicationYear "2015" @default.
- W1480931433 type Work @default.
- W1480931433 sameAs 1480931433 @default.
- W1480931433 citedByCount "22" @default.
- W1480931433 countsByYear W14809314332016 @default.
- W1480931433 countsByYear W14809314332017 @default.
- W1480931433 countsByYear W14809314332018 @default.
- W1480931433 countsByYear W14809314332019 @default.
- W1480931433 countsByYear W14809314332020 @default.
- W1480931433 countsByYear W14809314332021 @default.
- W1480931433 countsByYear W14809314332022 @default.
- W1480931433 countsByYear W14809314332023 @default.
- W1480931433 crossrefType "journal-article" @default.
- W1480931433 hasAuthorship W1480931433A5015158048 @default.
- W1480931433 hasAuthorship W1480931433A5073669975 @default.
- W1480931433 hasAuthorship W1480931433A5078143614 @default.
- W1480931433 hasBestOaLocation W14809314331 @default.
- W1480931433 hasConcept C119857082 @default.
- W1480931433 hasConcept C120665830 @default.
- W1480931433 hasConcept C121332964 @default.
- W1480931433 hasConcept C12267149 @default.
- W1480931433 hasConcept C124101348 @default.
- W1480931433 hasConcept C127413603 @default.
- W1480931433 hasConcept C138816342 @default.
- W1480931433 hasConcept C145642194 @default.
- W1480931433 hasConcept C154945302 @default.
- W1480931433 hasConcept C158693339 @default.
- W1480931433 hasConcept C159110408 @default.
- W1480931433 hasConcept C192209626 @default.
- W1480931433 hasConcept C199360897 @default.
- W1480931433 hasConcept C201995342 @default.
- W1480931433 hasConcept C204321447 @default.
- W1480931433 hasConcept C2780451532 @default.
- W1480931433 hasConcept C41008148 @default.
- W1480931433 hasConcept C42355184 @default.
- W1480931433 hasConcept C52001869 @default.
- W1480931433 hasConcept C62520636 @default.
- W1480931433 hasConcept C71924100 @default.
- W1480931433 hasConcept C98045186 @default.
- W1480931433 hasConceptScore W1480931433C119857082 @default.
- W1480931433 hasConceptScore W1480931433C120665830 @default.
- W1480931433 hasConceptScore W1480931433C121332964 @default.
- W1480931433 hasConceptScore W1480931433C12267149 @default.
- W1480931433 hasConceptScore W1480931433C124101348 @default.
- W1480931433 hasConceptScore W1480931433C127413603 @default.
- W1480931433 hasConceptScore W1480931433C138816342 @default.
- W1480931433 hasConceptScore W1480931433C145642194 @default.
- W1480931433 hasConceptScore W1480931433C154945302 @default.
- W1480931433 hasConceptScore W1480931433C158693339 @default.
- W1480931433 hasConceptScore W1480931433C159110408 @default.
- W1480931433 hasConceptScore W1480931433C192209626 @default.
- W1480931433 hasConceptScore W1480931433C199360897 @default.
- W1480931433 hasConceptScore W1480931433C201995342 @default.
- W1480931433 hasConceptScore W1480931433C204321447 @default.
- W1480931433 hasConceptScore W1480931433C2780451532 @default.
- W1480931433 hasConceptScore W1480931433C41008148 @default.
- W1480931433 hasConceptScore W1480931433C42355184 @default.
- W1480931433 hasConceptScore W1480931433C52001869 @default.
- W1480931433 hasConceptScore W1480931433C62520636 @default.
- W1480931433 hasConceptScore W1480931433C71924100 @default.
- W1480931433 hasConceptScore W1480931433C98045186 @default.
- W1480931433 hasIssue "S1" @default.
- W1480931433 hasLocation W14809314331 @default.
- W1480931433 hasLocation W14809314332 @default.
- W1480931433 hasLocation W14809314333 @default.
- W1480931433 hasLocation W14809314334 @default.
- W1480931433 hasLocation W14809314335 @default.
- W1480931433 hasOpenAccess W1480931433 @default.
- W1480931433 hasPrimaryLocation W14809314331 @default.
- W1480931433 hasRelatedWork W1470425429 @default.
- W1480931433 hasRelatedWork W2081647779 @default.