Matches in SemOpenAlex for { <https://semopenalex.org/work/W1481610363> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1481610363 endingPage "174" @default.
- W1481610363 startingPage "165" @default.
- W1481610363 abstract "Feature extraction is an important issue in electromyography (EMG) pattern classification, where feature sets of high dimensionality are always used. This paper proposes a novel classification method to deal with high-dimensional EMG patterns, using a probabilistic neural network, a reduced-dimensional log-linearized Gaussian mixture network (RD-LLGMN) [1]. Since RD-LLGMN merges feature extraction and pattern classification processes into its structure, lower-dimensional feature set consistent with classification purposes can be extracted, so that, better classification performance is possible. To verify feasibility of the proposed method, phoneme classification experiments were conducted using frequency features of EMG signals measured from mimetic and cervical muscles. Filter banks are used to extract frequency features, and dimensionality of the features grows significantly when we increase resolution of frequency. In these experiments, the proposed method achieved considerably high classification rates, and outperformed traditional methods that are based on principle component analysis (PCA)." @default.
- W1481610363 created "2016-06-24" @default.
- W1481610363 creator A5063305589 @default.
- W1481610363 creator A5081974106 @default.
- W1481610363 creator A5087717759 @default.
- W1481610363 date "2005-01-01" @default.
- W1481610363 modified "2023-09-26" @default.
- W1481610363 title "A Novel Pattern Classification Method for Multivariate EMG Signals Using Neural Network" @default.
- W1481610363 cites W1929650848 @default.
- W1481610363 cites W2006252838 @default.
- W1481610363 cites W2063541597 @default.
- W1481610363 cites W2097152158 @default.
- W1481610363 cites W2097690077 @default.
- W1481610363 cites W2122985829 @default.
- W1481610363 cites W2132549764 @default.
- W1481610363 cites W2164006146 @default.
- W1481610363 cites W2305887293 @default.
- W1481610363 cites W2576288680 @default.
- W1481610363 doi "https://doi.org/10.1007/11539117_26" @default.
- W1481610363 hasPublicationYear "2005" @default.
- W1481610363 type Work @default.
- W1481610363 sameAs 1481610363 @default.
- W1481610363 citedByCount "2" @default.
- W1481610363 countsByYear W14816103632012 @default.
- W1481610363 countsByYear W14816103632016 @default.
- W1481610363 crossrefType "book-chapter" @default.
- W1481610363 hasAuthorship W1481610363A5063305589 @default.
- W1481610363 hasAuthorship W1481610363A5081974106 @default.
- W1481610363 hasAuthorship W1481610363A5087717759 @default.
- W1481610363 hasBestOaLocation W14816103632 @default.
- W1481610363 hasConcept C111030470 @default.
- W1481610363 hasConcept C138885662 @default.
- W1481610363 hasConcept C153180895 @default.
- W1481610363 hasConcept C154945302 @default.
- W1481610363 hasConcept C27438332 @default.
- W1481610363 hasConcept C2776401178 @default.
- W1481610363 hasConcept C41008148 @default.
- W1481610363 hasConcept C41895202 @default.
- W1481610363 hasConcept C50644808 @default.
- W1481610363 hasConcept C52622490 @default.
- W1481610363 hasConcept C83665646 @default.
- W1481610363 hasConceptScore W1481610363C111030470 @default.
- W1481610363 hasConceptScore W1481610363C138885662 @default.
- W1481610363 hasConceptScore W1481610363C153180895 @default.
- W1481610363 hasConceptScore W1481610363C154945302 @default.
- W1481610363 hasConceptScore W1481610363C27438332 @default.
- W1481610363 hasConceptScore W1481610363C2776401178 @default.
- W1481610363 hasConceptScore W1481610363C41008148 @default.
- W1481610363 hasConceptScore W1481610363C41895202 @default.
- W1481610363 hasConceptScore W1481610363C50644808 @default.
- W1481610363 hasConceptScore W1481610363C52622490 @default.
- W1481610363 hasConceptScore W1481610363C83665646 @default.
- W1481610363 hasLocation W14816103631 @default.
- W1481610363 hasLocation W14816103632 @default.
- W1481610363 hasOpenAccess W1481610363 @default.
- W1481610363 hasPrimaryLocation W14816103631 @default.
- W1481610363 hasRelatedWork W1564326797 @default.
- W1481610363 hasRelatedWork W1622939446 @default.
- W1481610363 hasRelatedWork W2060518359 @default.
- W1481610363 hasRelatedWork W2085553065 @default.
- W1481610363 hasRelatedWork W2105055468 @default.
- W1481610363 hasRelatedWork W2132729794 @default.
- W1481610363 hasRelatedWork W2147478239 @default.
- W1481610363 hasRelatedWork W2353697322 @default.
- W1481610363 hasRelatedWork W2373052636 @default.
- W1481610363 hasRelatedWork W3197541072 @default.
- W1481610363 isParatext "false" @default.
- W1481610363 isRetracted "false" @default.
- W1481610363 magId "1481610363" @default.
- W1481610363 workType "book-chapter" @default.