Matches in SemOpenAlex for { <https://semopenalex.org/work/W1483281937> ?p ?o ?g. }
- W1483281937 endingPage "171" @default.
- W1483281937 startingPage "155" @default.
- W1483281937 abstract "Purpose The purpose of this paper is to contribute to the tourism management literature by: first, developing a hybrid neural network that will be able to predict tourists' overall satisfaction of their travel experience; and second, prioritizing the travel attributes based on their proportional impact on tourists' overall satisfaction of their travel experience in Iran. Design/methodology/approach A total of 1,870 questionnaires were distributed amongst foreign tourists in the departure lounge of “Imam Khomeini International Airport” over a period of three months. The data were used to develop a hybrid neural network in which the “rough set” is used to reduce travel attributes and the neural network to predict tourists' overall satisfaction of travel experience. After the model proved its predictive accuracy, using the sensitivity analysis of the neural network travel attributes were prioritized based on their impact on tourists' overall satisfaction. Findings The results were quite promising in that the proposed hybrid neural network was able to predict tourists' overall satisfaction with a relatively low amount of error (RMSE=0.05246). Furthermore, it was demonstrated that rough sets theory is capable to be applied effectively to feature selection of large datasets in the tourism context. Finally, it was found that “improving tourism infrastructures of the country” in addition to “globally promoting the image of Iran” (as a secure and pleasant destination) are of the highest priority for Iran's tourism industry to reach to its full potential. Originality/value Besides developing a data mining tool which is an efficient means for predicting tourists' overall satisfaction, the paper's findings provide precious information for tourism policy makers in Iran by prioritizing those travel attributes that have the greatest impact on foreign tourists' overall satisfaction of their travel experience." @default.
- W1483281937 created "2016-06-24" @default.
- W1483281937 creator A5006924957 @default.
- W1483281937 creator A5008848098 @default.
- W1483281937 creator A5012167583 @default.
- W1483281937 creator A5057689644 @default.
- W1483281937 date "2011-08-02" @default.
- W1483281937 modified "2023-09-30" @default.
- W1483281937 title "Importance analysis of travel attributes using a rough set‐based neural network" @default.
- W1483281937 cites W139024339 @default.
- W1483281937 cites W1963572896 @default.
- W1483281937 cites W1964959877 @default.
- W1483281937 cites W1965229818 @default.
- W1483281937 cites W1967495926 @default.
- W1483281937 cites W1974376305 @default.
- W1483281937 cites W1976967730 @default.
- W1483281937 cites W1988316245 @default.
- W1483281937 cites W1988406640 @default.
- W1483281937 cites W1996565101 @default.
- W1483281937 cites W1998960448 @default.
- W1483281937 cites W1999007279 @default.
- W1483281937 cites W2001456449 @default.
- W1483281937 cites W2004041310 @default.
- W1483281937 cites W2006926252 @default.
- W1483281937 cites W2007738521 @default.
- W1483281937 cites W2008465154 @default.
- W1483281937 cites W2008901357 @default.
- W1483281937 cites W2017708394 @default.
- W1483281937 cites W2018631819 @default.
- W1483281937 cites W2022349803 @default.
- W1483281937 cites W2023104914 @default.
- W1483281937 cites W2024222224 @default.
- W1483281937 cites W2024488608 @default.
- W1483281937 cites W2025273223 @default.
- W1483281937 cites W2031043958 @default.
- W1483281937 cites W2032204603 @default.
- W1483281937 cites W2039661695 @default.
- W1483281937 cites W2039910164 @default.
- W1483281937 cites W2042456834 @default.
- W1483281937 cites W2043788560 @default.
- W1483281937 cites W2049540513 @default.
- W1483281937 cites W2057830095 @default.
- W1483281937 cites W2058595220 @default.
- W1483281937 cites W2059392046 @default.
- W1483281937 cites W2069487023 @default.
- W1483281937 cites W2071266911 @default.
- W1483281937 cites W2071275949 @default.
- W1483281937 cites W2075292176 @default.
- W1483281937 cites W2075856635 @default.
- W1483281937 cites W2077258799 @default.
- W1483281937 cites W2077701017 @default.
- W1483281937 cites W2078763269 @default.
- W1483281937 cites W2094268623 @default.
- W1483281937 cites W2137307581 @default.
- W1483281937 cites W2158990337 @default.
- W1483281937 cites W2159501126 @default.
- W1483281937 cites W2159719881 @default.
- W1483281937 cites W2162364423 @default.
- W1483281937 cites W2504704373 @default.
- W1483281937 cites W3125627114 @default.
- W1483281937 cites W4249247926 @default.
- W1483281937 cites W4255833381 @default.
- W1483281937 doi "https://doi.org/10.1108/17579881111154254" @default.
- W1483281937 hasPublicationYear "2011" @default.
- W1483281937 type Work @default.
- W1483281937 sameAs 1483281937 @default.
- W1483281937 citedByCount "14" @default.
- W1483281937 countsByYear W14832819372012 @default.
- W1483281937 countsByYear W14832819372013 @default.
- W1483281937 countsByYear W14832819372015 @default.
- W1483281937 countsByYear W14832819372016 @default.
- W1483281937 countsByYear W14832819372017 @default.
- W1483281937 countsByYear W14832819372018 @default.
- W1483281937 countsByYear W14832819372020 @default.
- W1483281937 countsByYear W14832819372021 @default.
- W1483281937 countsByYear W14832819372022 @default.
- W1483281937 crossrefType "journal-article" @default.
- W1483281937 hasAuthorship W1483281937A5006924957 @default.
- W1483281937 hasAuthorship W1483281937A5008848098 @default.
- W1483281937 hasAuthorship W1483281937A5012167583 @default.
- W1483281937 hasAuthorship W1483281937A5057689644 @default.
- W1483281937 hasConcept C11012388 @default.
- W1483281937 hasConcept C111012933 @default.
- W1483281937 hasConcept C124101348 @default.
- W1483281937 hasConcept C144133560 @default.
- W1483281937 hasConcept C148483581 @default.
- W1483281937 hasConcept C154945302 @default.
- W1483281937 hasConcept C15744967 @default.
- W1483281937 hasConcept C162853370 @default.
- W1483281937 hasConcept C166957645 @default.
- W1483281937 hasConcept C18918823 @default.
- W1483281937 hasConcept C205649164 @default.
- W1483281937 hasConcept C2776950860 @default.
- W1483281937 hasConcept C2779343474 @default.
- W1483281937 hasConcept C41008148 @default.
- W1483281937 hasConcept C50644808 @default.
- W1483281937 hasConcept C77805123 @default.
- W1483281937 hasConceptScore W1483281937C11012388 @default.