Matches in SemOpenAlex for { <https://semopenalex.org/work/W1483440022> ?p ?o ?g. }
- W1483440022 abstract "The thermo-mechanical fatigue (TMF) of power plant components is caused by the cyclic operation of power plant due to startup and shutdown processes and due to the fluctuation of demand in daily operation. Thus, a time-dependent plasticity model is required in order to simulate the component response under cyclic thermo-mechanical loading. The overall aim behind this study is to develop a material constitutive model, which can predict the creep and cyclic loading behaviour at high temperature environment, based on the cyclic loading test data of the P91 and the P92 steels.The tests on all specimens in the study were performed using the Instron 8862 TMF machine system with a temperature uniformity of less than ±10°C within the gauge section of the specimen. For the isothermal tests on the P91 steel, fully-reversed, strain-controlled tests were conducted on a parent material of the steel at 400, 500 and 600˚C. For the P92 steel, the same loading parameters in the isothermal tests were performed on a parent material and a weld metal of the steels at 500, 600 and 675°C. Strain-controlled thermo-mechanical fatigue tests were conducted on the parent materials of the P91 and the P92 steels under temperature ranges of 400-600°C and 500-675°C, respectively, with in-phase (IP) and out-of-phase (OP) loading. In general, the steels exhibit cyclic softening behaviour throughout the cyclic test duration under both isothermal and anisothermal conditions.The cyclic softening behaviour of the P91 steel was further studied by analyzing stress-strain data at 600°C and by performing microstructural investigations. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images were used to investigate microstructural evolution and the crack initiation of the steel at different life fractions of the tests. The TEM images of the interrupted test specimens revealed subgrain coarsening during the cyclic tests. On the other hand, the SEM images showed the initiation of microcracks at the end of the stabilisation period and the cracks were propagated in the third stage of cyclic softening.A unified, Chaboche, viscoplasticity model, which includes combined isotropic softening and kinematic hardening with a viscoplastic flow rule for time-dependent effects, was used to model the TMF behaviour of the steels The constants in the viscoplasticity model were initially determined from the first cycle stress-strain data, the maximum stress evolution during tests and the stress relaxation data. Then, the initial constants were optimized using a least-squares optimization algorithm in order to improve the general fit of the model to experimental data. The prediction of the model was further improved by including the linear nonlinear isotropic hardening in order to obtain better stress-strain behaviour in the stabilisation period.The developed viscoplasticity model was subsequently used in the finite element simulations using the ABAQUS software. The focus of the simulation is to validate the performance of the model under various types of loading. Simulation results have been compared with the isothermal test data with different strain ranges and also the anisothermal cyclic testing data, for both in-phase and out-of-phase loadings. The model’s performance under 3-dimensional stress conditions was investigated by testing and simulating the P91 steel using a notched specimen under stress-controlled conditions. The simulation results show a good comparison to the experimental data." @default.
- W1483440022 created "2016-06-24" @default.
- W1483440022 creator A5061721849 @default.
- W1483440022 date "2012-03-15" @default.
- W1483440022 modified "2023-09-25" @default.
- W1483440022 title "Cyclic plasticity and creep of power plant materials" @default.
- W1483440022 cites W1566694159 @default.
- W1483440022 cites W1605058418 @default.
- W1483440022 cites W1605335700 @default.
- W1483440022 cites W1965149705 @default.
- W1483440022 cites W1966990339 @default.
- W1483440022 cites W1970129883 @default.
- W1483440022 cites W1971041539 @default.
- W1483440022 cites W1971428335 @default.
- W1483440022 cites W1972602317 @default.
- W1483440022 cites W1973547416 @default.
- W1483440022 cites W1974434675 @default.
- W1483440022 cites W1974829715 @default.
- W1483440022 cites W1975304187 @default.
- W1483440022 cites W1975952846 @default.
- W1483440022 cites W1976592934 @default.
- W1483440022 cites W1976870587 @default.
- W1483440022 cites W1978847697 @default.
- W1483440022 cites W1979758399 @default.
- W1483440022 cites W1979935599 @default.
- W1483440022 cites W1981509821 @default.
- W1483440022 cites W1982095478 @default.
- W1483440022 cites W1983248740 @default.
- W1483440022 cites W1988489682 @default.
- W1483440022 cites W1988816638 @default.
- W1483440022 cites W1990448754 @default.
- W1483440022 cites W1990529494 @default.
- W1483440022 cites W1991952419 @default.
- W1483440022 cites W1994747810 @default.
- W1483440022 cites W1996549880 @default.
- W1483440022 cites W1996812739 @default.
- W1483440022 cites W1999791618 @default.
- W1483440022 cites W2002750671 @default.
- W1483440022 cites W2003655484 @default.
- W1483440022 cites W2007060883 @default.
- W1483440022 cites W2007761550 @default.
- W1483440022 cites W2011708655 @default.
- W1483440022 cites W2014160104 @default.
- W1483440022 cites W2014279155 @default.
- W1483440022 cites W2017623863 @default.
- W1483440022 cites W2018949617 @default.
- W1483440022 cites W2019120643 @default.
- W1483440022 cites W2019937504 @default.
- W1483440022 cites W2020252660 @default.
- W1483440022 cites W2022904511 @default.
- W1483440022 cites W2024820144 @default.
- W1483440022 cites W2025486742 @default.
- W1483440022 cites W2026054077 @default.
- W1483440022 cites W2026168584 @default.
- W1483440022 cites W2027198066 @default.
- W1483440022 cites W2036373167 @default.
- W1483440022 cites W2039623421 @default.
- W1483440022 cites W2040856169 @default.
- W1483440022 cites W2048773695 @default.
- W1483440022 cites W2051354470 @default.
- W1483440022 cites W2051437917 @default.
- W1483440022 cites W2053449467 @default.
- W1483440022 cites W2055042111 @default.
- W1483440022 cites W2055215169 @default.
- W1483440022 cites W2055829745 @default.
- W1483440022 cites W2057003400 @default.
- W1483440022 cites W2057737426 @default.
- W1483440022 cites W2058252573 @default.
- W1483440022 cites W2059516381 @default.
- W1483440022 cites W2061436411 @default.
- W1483440022 cites W2061756614 @default.
- W1483440022 cites W2061890505 @default.
- W1483440022 cites W2066798110 @default.
- W1483440022 cites W2068678131 @default.
- W1483440022 cites W2070616004 @default.
- W1483440022 cites W2072096181 @default.
- W1483440022 cites W2072559801 @default.
- W1483440022 cites W2073649333 @default.
- W1483440022 cites W2075605888 @default.
- W1483440022 cites W2077773494 @default.
- W1483440022 cites W2079638121 @default.
- W1483440022 cites W2080146745 @default.
- W1483440022 cites W2083185854 @default.
- W1483440022 cites W2084392356 @default.
- W1483440022 cites W2085919661 @default.
- W1483440022 cites W2086166076 @default.
- W1483440022 cites W2087270819 @default.
- W1483440022 cites W2089092903 @default.
- W1483440022 cites W2089144163 @default.
- W1483440022 cites W2097775521 @default.
- W1483440022 cites W2099940515 @default.
- W1483440022 cites W2129202993 @default.
- W1483440022 cites W2140487908 @default.
- W1483440022 cites W2142186755 @default.
- W1483440022 cites W2156092039 @default.
- W1483440022 cites W2158860159 @default.
- W1483440022 cites W2164492334 @default.
- W1483440022 cites W2309049972 @default.
- W1483440022 cites W2482566871 @default.
- W1483440022 cites W2484936310 @default.