Matches in SemOpenAlex for { <https://semopenalex.org/work/W1483509061> ?p ?o ?g. }
- W1483509061 abstract "Agricultural production statistics reported at country or sub-national geopolitical scales are used in a wide range of economic analyses, and spatially explicit (geo-referenced) production data are increasingly needed to support improved approaches to the planning and implementation of agricultural development. However, it is extremely challenging to compile and maintain collections of sub-national crop production data, particularly for poorer regions of the world. Large gaps exist in our knowledge of the current geographic distribution and spatial patterns of crop performance, and these gaps are unlikely to be filled in the near future. Regardless, the spatial scale of many sub-national statistical reporting units remains too coarse to capture the patterns of spatial heterogeneity in crop production and performance that are likely to be important from a policy and investment planning perspective. To fill these spatial data gaps, we have developed and applied a meso-scale model for the spatial disaggregation of crop production. Using a cross-entropy approach, our model makes plausible pixel-scale assessment of the spatial distribution of crop production within geopolitical units (e.g. countries or sub-national provinces and districts). The pixel-scale allocations are performed through the compilation and judicious fusion of relevant spatially explicit data, including production statistics, land use data, satellite imagery, biophysical crop “suitability” assessments, population density, and distance to urban centers, as wells as any prior knowledge about the spatial distribution of individual crops. The development, application and validation of a prior version of the model using data from Brazil strongly suggested that our spatial allocation approach shows considerable promise. This paper describes efforts to generate crop distribution maps for Sub-Saharan Africa for the year 2000 using this approach. Apart from the empirical challenge of applying the approach across many countries, the application includes three significant model improvements, namely (1) the ability to cope with production data sources that provided different degrees of spatial disaggregation for different crops within a single country; (2) the inclusion of a digital map of irrigation intensity as a new input layer; and (3) increased disaggregation of rainfed production systems. Using the modified spatial allocation model, we generated 5-minute (approximately 10-km) resolution grid maps for 20 major crops across Sub-Saharan Africa, namely barley, dry beans, cassava, cocoa, coffee, cotton, cowpeas, groundnuts, maize, millet, oil palm, plantain, potato, rice, sorghum, soybeans, sugar cane, sweet potato, wheat, and yam. The approach provides plausible results but also highlights the need for much more reliable input data for the region, especially with regard to sub-national production statistics and satellite-based estimates of cropland extent and intensity. from Author's Abstract" @default.
- W1483509061 created "2016-06-24" @default.
- W1483509061 creator A5007366547 @default.
- W1483509061 creator A5061144961 @default.
- W1483509061 creator A5067284416 @default.
- W1483509061 date "2007-10-01" @default.
- W1483509061 modified "2023-09-27" @default.
- W1483509061 title "Generating Plausible Crop Distribution and Performance Maps for Sub-Saharan Africa Using a Spatially Disaggregated Data Fusion and Optimization Approach" @default.
- W1483509061 cites W1015921946 @default.
- W1483509061 cites W1481058184 @default.
- W1483509061 cites W1482798475 @default.
- W1483509061 cites W1483886140 @default.
- W1483509061 cites W1491704251 @default.
- W1483509061 cites W1516035423 @default.
- W1483509061 cites W1531481318 @default.
- W1483509061 cites W1532121245 @default.
- W1483509061 cites W1540826000 @default.
- W1483509061 cites W1541142862 @default.
- W1483509061 cites W1544679897 @default.
- W1483509061 cites W1552900877 @default.
- W1483509061 cites W1562886098 @default.
- W1483509061 cites W1567985189 @default.
- W1483509061 cites W1570238336 @default.
- W1483509061 cites W1571399024 @default.
- W1483509061 cites W1575716401 @default.
- W1483509061 cites W1577161853 @default.
- W1483509061 cites W1578386191 @default.
- W1483509061 cites W1594565408 @default.
- W1483509061 cites W1606723269 @default.
- W1483509061 cites W1987117965 @default.
- W1483509061 cites W198794361 @default.
- W1483509061 cites W1993457287 @default.
- W1483509061 cites W1995875735 @default.
- W1483509061 cites W2001163086 @default.
- W1483509061 cites W2005961333 @default.
- W1483509061 cites W2007480619 @default.
- W1483509061 cites W2009265767 @default.
- W1483509061 cites W2013995008 @default.
- W1483509061 cites W2024246169 @default.
- W1483509061 cites W2032558547 @default.
- W1483509061 cites W2046176762 @default.
- W1483509061 cites W2046709617 @default.
- W1483509061 cites W2056425951 @default.
- W1483509061 cites W2073306695 @default.
- W1483509061 cites W2077915256 @default.
- W1483509061 cites W2085035787 @default.
- W1483509061 cites W2103405377 @default.
- W1483509061 cites W2107503846 @default.
- W1483509061 cites W2112898194 @default.
- W1483509061 cites W2120866496 @default.
- W1483509061 cites W2121025662 @default.
- W1483509061 cites W2124146294 @default.
- W1483509061 cites W2127559745 @default.
- W1483509061 cites W2127839734 @default.
- W1483509061 cites W2134134375 @default.
- W1483509061 cites W2140146054 @default.
- W1483509061 cites W2160455229 @default.
- W1483509061 cites W2239342937 @default.
- W1483509061 cites W2257511750 @default.
- W1483509061 cites W2559410626 @default.
- W1483509061 cites W3122439425 @default.
- W1483509061 cites W3123737058 @default.
- W1483509061 cites W56012926 @default.
- W1483509061 doi "https://doi.org/10.22004/ag.econ.42374" @default.
- W1483509061 hasPublicationYear "2007" @default.
- W1483509061 type Work @default.
- W1483509061 sameAs 1483509061 @default.
- W1483509061 citedByCount "38" @default.
- W1483509061 countsByYear W14835090612012 @default.
- W1483509061 countsByYear W14835090612014 @default.
- W1483509061 countsByYear W14835090612015 @default.
- W1483509061 countsByYear W14835090612016 @default.
- W1483509061 countsByYear W14835090612017 @default.
- W1483509061 countsByYear W14835090612018 @default.
- W1483509061 crossrefType "posted-content" @default.
- W1483509061 hasAuthorship W1483509061A5007366547 @default.
- W1483509061 hasAuthorship W1483509061A5061144961 @default.
- W1483509061 hasAuthorship W1483509061A5067284416 @default.
- W1483509061 hasConcept C107826830 @default.
- W1483509061 hasConcept C110121322 @default.
- W1483509061 hasConcept C118518473 @default.
- W1483509061 hasConcept C127413603 @default.
- W1483509061 hasConcept C128383755 @default.
- W1483509061 hasConcept C134306372 @default.
- W1483509061 hasConcept C139719470 @default.
- W1483509061 hasConcept C147176958 @default.
- W1483509061 hasConcept C149782125 @default.
- W1483509061 hasConcept C159620131 @default.
- W1483509061 hasConcept C162324750 @default.
- W1483509061 hasConcept C166957645 @default.
- W1483509061 hasConcept C205649164 @default.
- W1483509061 hasConcept C2777016058 @default.
- W1483509061 hasConcept C2778348673 @default.
- W1483509061 hasConcept C2778755073 @default.
- W1483509061 hasConcept C33923547 @default.
- W1483509061 hasConcept C39432304 @default.
- W1483509061 hasConcept C4792198 @default.
- W1483509061 hasConcept C58640448 @default.
- W1483509061 hasConcept C62649853 @default.
- W1483509061 hasConceptScore W1483509061C107826830 @default.