Matches in SemOpenAlex for { <https://semopenalex.org/work/W1484341208> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1484341208 abstract "Rationale. Despite promising beginnings, molecular classifiers derived from statistical learning do not yet appear to be sufficiently mature for clinical use. Besides known limitations, the nearly universal absence of mechanistic underpinnings for such signatures represents as major barrier toward successful implementation of clinically useful biomarkers. To overcome this limitation we constrained the search for predictive models to those with mechanistic justification, by incorporating microRNA (miR) and transcription factor (TF) gene regulatory networks directly into the learning process of cancer phenotypes. Methods. To illustrate the impact of embedding such regulatory motifs into computational learning, we analyzed the ability to predict estrogen receptor (ER) status from transcriptional data. We applied this approach to two independent breast cancer studies used as training and validation sets respectively. This analysis provided a test case with well-characterized clinical attributes, in which the ER itself is a TF engaged in regulatory miR/TF motifs. We built our predictors using Top Scoring Pair (TSP), a two-gene parameter-free classifier returning one class (ER positive) or the other (ER negative) based on the relative ordering of the two genes. We compared classification performance between TSPs chosen from all possible gene pairs and TSPs constructed under network-based constraints - “random” and “mechanistic” TSPs respectively hereafter. Each “mechanistic” TSP consists of a gene pair: the first gene regulates a miR or a TF “hub”, which in turn regulates the second gene. We started from a network of 200 TFs, 373 miRs, and 2772 target genes based on regulatory information from the miRgen v2.0 and TarBase v5.0 databases. Results. We assessed the classification accuracy of the TSP classifiers derived from the training dataset in the validation set and nearly all top-performing predictors were based on regulatory motifs. A Wilcoxon rank-sum test comparing the “random” classifiers with either TF or miR based TSPs had P-values of 10 −14 and 10 −26 , respectively. Most of such top “mechanistic” predictors involved the ER gene (ERS1), consistent with the underlying biology. The mechanistic predictor also paired ERS1 expression with genes relevant to the biology. For instance, TSP selected POU2F1 _ a TF member of the POU family also known as OCT1 _ which physically interacts with the ER itself and BRCA1, recruiting BRCA1 to the ESR1 promoter modulating ER expression. Consistent with the classifier, BRCA1-mutant breast tumors are typically estrogen ER negative. Conclusions. We have implemented a novel class of mechanistic predictors by ”hardwiring” gene regulatory network information into statistical learning of cancer phenotypes. This approach has intrinsic added value for knowledge discovery and disease treatment design, and will ultimately move the field towards a successful transition to personalized health care. Citation Format: Bahman Afsari, Elana Judith Fertig, Laurent Younes, Donald Geman, Luigi Marchionni. Hardwiring mechanism into predicting cancer phenotypes by computational learning. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 5342. doi:10.1158/1538-7445.AM2014-5342" @default.
- W1484341208 created "2016-06-24" @default.
- W1484341208 creator A5001164623 @default.
- W1484341208 creator A5003097757 @default.
- W1484341208 creator A5013551450 @default.
- W1484341208 creator A5064320962 @default.
- W1484341208 creator A5079978893 @default.
- W1484341208 date "2014-09-30" @default.
- W1484341208 modified "2023-09-25" @default.
- W1484341208 title "Abstract 5342: Hardwiring mechanism into predicting cancer phenotypes by computational learning" @default.
- W1484341208 doi "https://doi.org/10.1158/1538-7445.am2014-5342" @default.
- W1484341208 hasPublicationYear "2014" @default.
- W1484341208 type Work @default.
- W1484341208 sameAs 1484341208 @default.
- W1484341208 citedByCount "0" @default.
- W1484341208 crossrefType "proceedings-article" @default.
- W1484341208 hasAuthorship W1484341208A5001164623 @default.
- W1484341208 hasAuthorship W1484341208A5003097757 @default.
- W1484341208 hasAuthorship W1484341208A5013551450 @default.
- W1484341208 hasAuthorship W1484341208A5064320962 @default.
- W1484341208 hasAuthorship W1484341208A5079978893 @default.
- W1484341208 hasConcept C104317684 @default.
- W1484341208 hasConcept C111472728 @default.
- W1484341208 hasConcept C119857082 @default.
- W1484341208 hasConcept C121608353 @default.
- W1484341208 hasConcept C127716648 @default.
- W1484341208 hasConcept C138885662 @default.
- W1484341208 hasConcept C150194340 @default.
- W1484341208 hasConcept C154945302 @default.
- W1484341208 hasConcept C41008148 @default.
- W1484341208 hasConcept C530470458 @default.
- W1484341208 hasConcept C54355233 @default.
- W1484341208 hasConcept C60644358 @default.
- W1484341208 hasConcept C67339327 @default.
- W1484341208 hasConcept C70721500 @default.
- W1484341208 hasConcept C86339819 @default.
- W1484341208 hasConcept C86803240 @default.
- W1484341208 hasConcept C89611455 @default.
- W1484341208 hasConcept C95623464 @default.
- W1484341208 hasConceptScore W1484341208C104317684 @default.
- W1484341208 hasConceptScore W1484341208C111472728 @default.
- W1484341208 hasConceptScore W1484341208C119857082 @default.
- W1484341208 hasConceptScore W1484341208C121608353 @default.
- W1484341208 hasConceptScore W1484341208C127716648 @default.
- W1484341208 hasConceptScore W1484341208C138885662 @default.
- W1484341208 hasConceptScore W1484341208C150194340 @default.
- W1484341208 hasConceptScore W1484341208C154945302 @default.
- W1484341208 hasConceptScore W1484341208C41008148 @default.
- W1484341208 hasConceptScore W1484341208C530470458 @default.
- W1484341208 hasConceptScore W1484341208C54355233 @default.
- W1484341208 hasConceptScore W1484341208C60644358 @default.
- W1484341208 hasConceptScore W1484341208C67339327 @default.
- W1484341208 hasConceptScore W1484341208C70721500 @default.
- W1484341208 hasConceptScore W1484341208C86339819 @default.
- W1484341208 hasConceptScore W1484341208C86803240 @default.
- W1484341208 hasConceptScore W1484341208C89611455 @default.
- W1484341208 hasConceptScore W1484341208C95623464 @default.
- W1484341208 hasLocation W14843412081 @default.
- W1484341208 hasOpenAccess W1484341208 @default.
- W1484341208 hasPrimaryLocation W14843412081 @default.
- W1484341208 hasRelatedWork W1965982082 @default.
- W1484341208 hasRelatedWork W1988068519 @default.
- W1484341208 hasRelatedWork W1993286543 @default.
- W1484341208 hasRelatedWork W1998287342 @default.
- W1484341208 hasRelatedWork W2000161741 @default.
- W1484341208 hasRelatedWork W2012009763 @default.
- W1484341208 hasRelatedWork W2027667376 @default.
- W1484341208 hasRelatedWork W2152009986 @default.
- W1484341208 hasRelatedWork W2272888487 @default.
- W1484341208 hasRelatedWork W2291015744 @default.
- W1484341208 hasRelatedWork W2341768756 @default.
- W1484341208 hasRelatedWork W2562614588 @default.
- W1484341208 hasRelatedWork W2950862347 @default.
- W1484341208 hasRelatedWork W2953403876 @default.
- W1484341208 hasRelatedWork W2959640585 @default.
- W1484341208 hasRelatedWork W3082122339 @default.
- W1484341208 hasRelatedWork W3096362721 @default.
- W1484341208 hasRelatedWork W3128668794 @default.
- W1484341208 hasRelatedWork W3148415067 @default.
- W1484341208 hasRelatedWork W3038638095 @default.
- W1484341208 isParatext "false" @default.
- W1484341208 isRetracted "false" @default.
- W1484341208 magId "1484341208" @default.
- W1484341208 workType "article" @default.