Matches in SemOpenAlex for { <https://semopenalex.org/work/W1484394043> ?p ?o ?g. }
- W1484394043 abstract "This chapter is devoted to the study of the lattice vibrations within a crystal structure using laser-based time resolved spectroscopic methods. We have used ultrafast pulsed laser systems to extend the analysis of atomic displacements into the time domain with femtosecond resolution. This field has gained a lot of attention from a large scientific community during the past decades. Actually, the knowledge of all the properties in a crystal depends on two key factors: the way in which atoms arrange themselves to give rise to the crystal structure, and the movement of both electrons and atoms within this structure. Many physical parameters, such as the transport properties, strongly depend on the dynamical behavior of both electrons and atoms. Besides, themutual interaction between them determines the pathway of chemical reactions and phase transitions. As an example, one challenge in solid state physics is the understanding and control of high temperature superconductivity, in which the dynamical aspectmay play a crucial role. If there is a lattice displacement responsible for the Cooper pairs formation, its selective excitation could be exploited to reach a superconductivity phase even at temperature well above the known transition temperature. The general question is how can we modify the phase of a material using photons. This type of studies belong to a broader research area, known as the science of photoinduced phase transition. An important point is that high frequency lattice vibrations are the first response of ions to the external pumping laser pulse. Therefore, the study of such movements could clarify the energy relaxation channels of the excess energy stored into the electrons subsystem from the pumping laser pulse. Another important application of the study of coherent phonon concerns nanostructures. When reducing the size down to the nanometric scale, the ratio between the atomic displacement and the structure size increases considerably. Together with the confinement effect, this produces major modifications of the physical properties. The general movement of the atoms within the crystal structure can be seen as an elastic deformation, which can be described as a sum of several normal modes of vibration of the lattice. The quantum of energy associated to a normal mode of vibration of the lattice is called phonon. In order to study each of these elementary vibrations, there is a need to excite and detect selectively the desired phonon mode. This is possible only if we can excite and detect the phonon mode coherently, i.e. the atomic vibration has a given phase which is kept in a time window, called the dephasing time or damping time. Coherent phonons were observed in many different materials, and their extensive study in novel materials represents a large part of the activity centered on the femtosecond laser 5" @default.
- W1484394043 created "2016-06-24" @default.
- W1484394043 creator A5025071175 @default.
- W1484394043 creator A5066135084 @default.
- W1484394043 date "2010-11-30" @default.
- W1484394043 modified "2023-10-03" @default.
- W1484394043 title "Coherent Optical Phonons in Bismuth Crystal" @default.
- W1484394043 cites W1539643835 @default.
- W1484394043 cites W1651314737 @default.
- W1484394043 cites W1964600680 @default.
- W1484394043 cites W1964649582 @default.
- W1484394043 cites W1964922060 @default.
- W1484394043 cites W1965248218 @default.
- W1484394043 cites W1966948817 @default.
- W1484394043 cites W1968353385 @default.
- W1484394043 cites W1968505992 @default.
- W1484394043 cites W1976104235 @default.
- W1484394043 cites W1977468579 @default.
- W1484394043 cites W1984847097 @default.
- W1484394043 cites W1988618202 @default.
- W1484394043 cites W1990863401 @default.
- W1484394043 cites W1995332624 @default.
- W1484394043 cites W2002901351 @default.
- W1484394043 cites W2007178430 @default.
- W1484394043 cites W2011216511 @default.
- W1484394043 cites W2017714758 @default.
- W1484394043 cites W2019509104 @default.
- W1484394043 cites W2033771842 @default.
- W1484394043 cites W2041316682 @default.
- W1484394043 cites W2041951635 @default.
- W1484394043 cites W2049678057 @default.
- W1484394043 cites W2071374012 @default.
- W1484394043 cites W2076587397 @default.
- W1484394043 cites W2076828243 @default.
- W1484394043 cites W2091077450 @default.
- W1484394043 cites W2091211092 @default.
- W1484394043 cites W2788533967 @default.
- W1484394043 cites W2997337505 @default.
- W1484394043 doi "https://doi.org/10.5772/12901" @default.
- W1484394043 hasPublicationYear "2010" @default.
- W1484394043 type Work @default.
- W1484394043 sameAs 1484394043 @default.
- W1484394043 citedByCount "0" @default.
- W1484394043 crossrefType "book-chapter" @default.
- W1484394043 hasAuthorship W1484394043A5025071175 @default.
- W1484394043 hasAuthorship W1484394043A5066135084 @default.
- W1484394043 hasBestOaLocation W14843940431 @default.
- W1484394043 hasConcept C115624301 @default.
- W1484394043 hasConcept C121332964 @default.
- W1484394043 hasConcept C147120987 @default.
- W1484394043 hasConcept C149288129 @default.
- W1484394043 hasConcept C159317903 @default.
- W1484394043 hasConcept C167735695 @default.
- W1484394043 hasConcept C184779094 @default.
- W1484394043 hasConcept C185592680 @default.
- W1484394043 hasConcept C199360897 @default.
- W1484394043 hasConcept C24169881 @default.
- W1484394043 hasConcept C24890656 @default.
- W1484394043 hasConcept C26873012 @default.
- W1484394043 hasConcept C2781204021 @default.
- W1484394043 hasConcept C2781285689 @default.
- W1484394043 hasConcept C41008148 @default.
- W1484394043 hasConcept C520434653 @default.
- W1484394043 hasConcept C54101563 @default.
- W1484394043 hasConcept C62520636 @default.
- W1484394043 hasConcept C8010536 @default.
- W1484394043 hasConcept C83581075 @default.
- W1484394043 hasConceptScore W1484394043C115624301 @default.
- W1484394043 hasConceptScore W1484394043C121332964 @default.
- W1484394043 hasConceptScore W1484394043C147120987 @default.
- W1484394043 hasConceptScore W1484394043C149288129 @default.
- W1484394043 hasConceptScore W1484394043C159317903 @default.
- W1484394043 hasConceptScore W1484394043C167735695 @default.
- W1484394043 hasConceptScore W1484394043C184779094 @default.
- W1484394043 hasConceptScore W1484394043C185592680 @default.
- W1484394043 hasConceptScore W1484394043C199360897 @default.
- W1484394043 hasConceptScore W1484394043C24169881 @default.
- W1484394043 hasConceptScore W1484394043C24890656 @default.
- W1484394043 hasConceptScore W1484394043C26873012 @default.
- W1484394043 hasConceptScore W1484394043C2781204021 @default.
- W1484394043 hasConceptScore W1484394043C2781285689 @default.
- W1484394043 hasConceptScore W1484394043C41008148 @default.
- W1484394043 hasConceptScore W1484394043C520434653 @default.
- W1484394043 hasConceptScore W1484394043C54101563 @default.
- W1484394043 hasConceptScore W1484394043C62520636 @default.
- W1484394043 hasConceptScore W1484394043C8010536 @default.
- W1484394043 hasConceptScore W1484394043C83581075 @default.
- W1484394043 hasLocation W14843940431 @default.
- W1484394043 hasLocation W14843940432 @default.
- W1484394043 hasOpenAccess W1484394043 @default.
- W1484394043 hasPrimaryLocation W14843940431 @default.
- W1484394043 hasRelatedWork W1606081832 @default.
- W1484394043 hasRelatedWork W1637187303 @default.
- W1484394043 hasRelatedWork W1959915212 @default.
- W1484394043 hasRelatedWork W2001743213 @default.
- W1484394043 hasRelatedWork W2090420440 @default.
- W1484394043 hasRelatedWork W2239042916 @default.
- W1484394043 hasRelatedWork W2734413223 @default.
- W1484394043 hasRelatedWork W2799008011 @default.
- W1484394043 hasRelatedWork W2805245443 @default.