Matches in SemOpenAlex for { <https://semopenalex.org/work/W1484726263> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W1484726263 endingPage "26" @default.
- W1484726263 startingPage "21" @default.
- W1484726263 abstract "Support vector machine is a new kind of learning method based on solid theoretical foundation, but this method has the characteristic of sensitivity to parameter. According to this characteristic, this paper use genetic algorithm to optimize the parameters of SVM and cross validation is introduced to reduce the dependence of the parameters on the training samples. Through the analysis of fatigue data for the relevant literature, take the parameters of the best generalization ability as the final parameters and apply the obtained model (GA-SVR) in material fatigue life prediction. Compared with the conventional SVR model and PSO-SVR model, the mean square error and the square of correlation coefficient are used to verify the reliability and accuracy of the three models. The results show that, the GA-SVR model can predict the fatigue life of materials with high accuracy." @default.
- W1484726263 created "2016-06-24" @default.
- W1484726263 creator A5015224182 @default.
- W1484726263 creator A5052218498 @default.
- W1484726263 creator A5075038156 @default.
- W1484726263 creator A5086586957 @default.
- W1484726263 date "2015-03-26" @default.
- W1484726263 modified "2023-09-27" @default.
- W1484726263 title "Using Genetic Algorithm to Optimize Parameters of Support Vector Machine and Its Application in Material Fatigue Life Prediction" @default.
- W1484726263 cites W2035971493 @default.
- W1484726263 cites W2062408104 @default.
- W1484726263 cites W2359355596 @default.
- W1484726263 doi "https://doi.org/10.3968/6404" @default.
- W1484726263 hasPublicationYear "2015" @default.
- W1484726263 type Work @default.
- W1484726263 sameAs 1484726263 @default.
- W1484726263 citedByCount "3" @default.
- W1484726263 countsByYear W14847262632016 @default.
- W1484726263 countsByYear W14847262632019 @default.
- W1484726263 crossrefType "journal-article" @default.
- W1484726263 hasAuthorship W1484726263A5015224182 @default.
- W1484726263 hasAuthorship W1484726263A5052218498 @default.
- W1484726263 hasAuthorship W1484726263A5075038156 @default.
- W1484726263 hasAuthorship W1484726263A5086586957 @default.
- W1484726263 hasConcept C105795698 @default.
- W1484726263 hasConcept C11413529 @default.
- W1484726263 hasConcept C119857082 @default.
- W1484726263 hasConcept C121332964 @default.
- W1484726263 hasConcept C12267149 @default.
- W1484726263 hasConcept C127413603 @default.
- W1484726263 hasConcept C134306372 @default.
- W1484726263 hasConcept C139945424 @default.
- W1484726263 hasConcept C154945302 @default.
- W1484726263 hasConcept C163258240 @default.
- W1484726263 hasConcept C177148314 @default.
- W1484726263 hasConcept C21200559 @default.
- W1484726263 hasConcept C24326235 @default.
- W1484726263 hasConcept C2780092901 @default.
- W1484726263 hasConcept C33923547 @default.
- W1484726263 hasConcept C41008148 @default.
- W1484726263 hasConcept C43214815 @default.
- W1484726263 hasConcept C62520636 @default.
- W1484726263 hasConcept C8880873 @default.
- W1484726263 hasConceptScore W1484726263C105795698 @default.
- W1484726263 hasConceptScore W1484726263C11413529 @default.
- W1484726263 hasConceptScore W1484726263C119857082 @default.
- W1484726263 hasConceptScore W1484726263C121332964 @default.
- W1484726263 hasConceptScore W1484726263C12267149 @default.
- W1484726263 hasConceptScore W1484726263C127413603 @default.
- W1484726263 hasConceptScore W1484726263C134306372 @default.
- W1484726263 hasConceptScore W1484726263C139945424 @default.
- W1484726263 hasConceptScore W1484726263C154945302 @default.
- W1484726263 hasConceptScore W1484726263C163258240 @default.
- W1484726263 hasConceptScore W1484726263C177148314 @default.
- W1484726263 hasConceptScore W1484726263C21200559 @default.
- W1484726263 hasConceptScore W1484726263C24326235 @default.
- W1484726263 hasConceptScore W1484726263C2780092901 @default.
- W1484726263 hasConceptScore W1484726263C33923547 @default.
- W1484726263 hasConceptScore W1484726263C41008148 @default.
- W1484726263 hasConceptScore W1484726263C43214815 @default.
- W1484726263 hasConceptScore W1484726263C62520636 @default.
- W1484726263 hasConceptScore W1484726263C8880873 @default.
- W1484726263 hasIssue "1" @default.
- W1484726263 hasLocation W14847262631 @default.
- W1484726263 hasOpenAccess W1484726263 @default.
- W1484726263 hasPrimaryLocation W14847262631 @default.
- W1484726263 hasRelatedWork W1566738621 @default.
- W1484726263 hasRelatedWork W1982098013 @default.
- W1484726263 hasRelatedWork W2043829975 @default.
- W1484726263 hasRelatedWork W2059310490 @default.
- W1484726263 hasRelatedWork W2079662496 @default.
- W1484726263 hasRelatedWork W2101600774 @default.
- W1484726263 hasRelatedWork W2357706303 @default.
- W1484726263 hasRelatedWork W2359336104 @default.
- W1484726263 hasRelatedWork W2374322067 @default.
- W1484726263 hasRelatedWork W2374927229 @default.
- W1484726263 hasRelatedWork W2379068408 @default.
- W1484726263 hasRelatedWork W2389304792 @default.
- W1484726263 hasRelatedWork W2391363575 @default.
- W1484726263 hasRelatedWork W2592040584 @default.
- W1484726263 hasRelatedWork W2746076170 @default.
- W1484726263 hasRelatedWork W2756263260 @default.
- W1484726263 hasRelatedWork W2920896351 @default.
- W1484726263 hasRelatedWork W3022789660 @default.
- W1484726263 hasRelatedWork W3195361408 @default.
- W1484726263 hasRelatedWork W3212189208 @default.
- W1484726263 hasVolume "8" @default.
- W1484726263 isParatext "false" @default.
- W1484726263 isRetracted "false" @default.
- W1484726263 magId "1484726263" @default.
- W1484726263 workType "article" @default.