Matches in SemOpenAlex for { <https://semopenalex.org/work/W1485656779> ?p ?o ?g. }
- W1485656779 abstract "In this paper we study the nest representations <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho colon script upper A long right-arrow upper A l g script upper N> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>:</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:mo stretchy=false>⟶<!-- ⟶ --></mml:mo> <mml:mi>Alg</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>rho : mathcal {A} longrightarrow operatorname {Alg} mathcal {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a strongly maximal TAF algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper A> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose ranges contain non-zero compact operators. We introduce a particular class of such representations, the essential nest representations, and we show that their kernels coincide with the completely meet irreducible ideals. From this we deduce that there exist enough contractive nest representations, with non-zero compact operators in their range, to separate the points in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper A> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using nest representation theory, we also give a coordinate-free description of the fundamental groupoid for strongly maximal TAF algebras. For an arbitrary nest representation <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho colon script upper A long right-arrow upper A l g script upper N> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>:</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:mo stretchy=false>⟶<!-- ⟶ --></mml:mo> <mml:mi>Alg</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>rho : mathcal {A} longrightarrow operatorname {Alg} mathcal {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show that the presence of non-zero compact operators in the range of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho> <mml:semantics> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:annotation encoding=application/x-tex>rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> implies that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper N> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>N</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is similar to a completely atomic nest. If, in addition, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho left-parenthesis script upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>rho (mathcal {A} )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is closed, then every compact operator in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho left-parenthesis script upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>rho (mathcal {A} )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be approximated by sums of rank one operators <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho left-parenthesis script upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>rho (mathcal {A} )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the case of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper N> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>N</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ordered nest representations, we show that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho left-parenthesis script upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>A</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>rho ( mathcal {A})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains finite rank operators iff <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=kernel rho> <mml:semantics> <mml:mrow> <mml:mi>ker</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>ker rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fails to be a prime ideal." @default.
- W1485656779 created "2016-06-24" @default.
- W1485656779 creator A5045919747 @default.
- W1485656779 creator A5062363241 @default.
- W1485656779 date "2007-01-04" @default.
- W1485656779 modified "2023-10-18" @default.
- W1485656779 title "Compact operators and nest representations of limit algebras" @default.
- W1485656779 cites W1546322230 @default.
- W1485656779 cites W1937336616 @default.
- W1485656779 cites W1970893197 @default.
- W1485656779 cites W1980535708 @default.
- W1485656779 cites W1984718850 @default.
- W1485656779 cites W1998570892 @default.
- W1485656779 cites W2010287251 @default.
- W1485656779 cites W2021828629 @default.
- W1485656779 cites W2038143275 @default.
- W1485656779 cites W2038168119 @default.
- W1485656779 cites W2041132984 @default.
- W1485656779 cites W2056910988 @default.
- W1485656779 cites W2090960711 @default.
- W1485656779 cites W2095037038 @default.
- W1485656779 cites W223829843 @default.
- W1485656779 cites W2280683091 @default.
- W1485656779 cites W2328539796 @default.
- W1485656779 cites W4250054017 @default.
- W1485656779 cites W584391566 @default.
- W1485656779 doi "https://doi.org/10.1090/s0002-9947-07-04071-8" @default.
- W1485656779 hasPublicationYear "2007" @default.
- W1485656779 type Work @default.
- W1485656779 sameAs 1485656779 @default.
- W1485656779 citedByCount "5" @default.
- W1485656779 countsByYear W14856567792022 @default.
- W1485656779 crossrefType "journal-article" @default.
- W1485656779 hasAuthorship W1485656779A5045919747 @default.
- W1485656779 hasAuthorship W1485656779A5062363241 @default.
- W1485656779 hasBestOaLocation W14856567791 @default.
- W1485656779 hasConcept C104317684 @default.
- W1485656779 hasConcept C111472728 @default.
- W1485656779 hasConcept C114614502 @default.
- W1485656779 hasConcept C118615104 @default.
- W1485656779 hasConcept C134306372 @default.
- W1485656779 hasConcept C136119220 @default.
- W1485656779 hasConcept C138885662 @default.
- W1485656779 hasConcept C142292226 @default.
- W1485656779 hasConcept C14394260 @default.
- W1485656779 hasConcept C151201525 @default.
- W1485656779 hasConcept C158448853 @default.
- W1485656779 hasConcept C159985019 @default.
- W1485656779 hasConcept C164226766 @default.
- W1485656779 hasConcept C17020691 @default.
- W1485656779 hasConcept C17744445 @default.
- W1485656779 hasConcept C185592680 @default.
- W1485656779 hasConcept C192562407 @default.
- W1485656779 hasConcept C199539241 @default.
- W1485656779 hasConcept C202444582 @default.
- W1485656779 hasConcept C204323151 @default.
- W1485656779 hasConcept C207264727 @default.
- W1485656779 hasConcept C2776359362 @default.
- W1485656779 hasConcept C2776639384 @default.
- W1485656779 hasConcept C2780813799 @default.
- W1485656779 hasConcept C33923547 @default.
- W1485656779 hasConcept C41895202 @default.
- W1485656779 hasConcept C518143113 @default.
- W1485656779 hasConcept C55493867 @default.
- W1485656779 hasConcept C86339819 @default.
- W1485656779 hasConcept C94625758 @default.
- W1485656779 hasConceptScore W1485656779C104317684 @default.
- W1485656779 hasConceptScore W1485656779C111472728 @default.
- W1485656779 hasConceptScore W1485656779C114614502 @default.
- W1485656779 hasConceptScore W1485656779C118615104 @default.
- W1485656779 hasConceptScore W1485656779C134306372 @default.
- W1485656779 hasConceptScore W1485656779C136119220 @default.
- W1485656779 hasConceptScore W1485656779C138885662 @default.
- W1485656779 hasConceptScore W1485656779C142292226 @default.
- W1485656779 hasConceptScore W1485656779C14394260 @default.
- W1485656779 hasConceptScore W1485656779C151201525 @default.
- W1485656779 hasConceptScore W1485656779C158448853 @default.
- W1485656779 hasConceptScore W1485656779C159985019 @default.
- W1485656779 hasConceptScore W1485656779C164226766 @default.
- W1485656779 hasConceptScore W1485656779C17020691 @default.
- W1485656779 hasConceptScore W1485656779C17744445 @default.
- W1485656779 hasConceptScore W1485656779C185592680 @default.
- W1485656779 hasConceptScore W1485656779C192562407 @default.
- W1485656779 hasConceptScore W1485656779C199539241 @default.
- W1485656779 hasConceptScore W1485656779C202444582 @default.
- W1485656779 hasConceptScore W1485656779C204323151 @default.
- W1485656779 hasConceptScore W1485656779C207264727 @default.
- W1485656779 hasConceptScore W1485656779C2776359362 @default.
- W1485656779 hasConceptScore W1485656779C2776639384 @default.
- W1485656779 hasConceptScore W1485656779C2780813799 @default.
- W1485656779 hasConceptScore W1485656779C33923547 @default.
- W1485656779 hasConceptScore W1485656779C41895202 @default.
- W1485656779 hasConceptScore W1485656779C518143113 @default.
- W1485656779 hasConceptScore W1485656779C55493867 @default.
- W1485656779 hasConceptScore W1485656779C86339819 @default.
- W1485656779 hasConceptScore W1485656779C94625758 @default.
- W1485656779 hasLocation W14856567791 @default.
- W1485656779 hasLocation W14856567792 @default.
- W1485656779 hasLocation W14856567793 @default.
- W1485656779 hasOpenAccess W1485656779 @default.