Matches in SemOpenAlex for { <https://semopenalex.org/work/W1485754829> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1485754829 abstract "In the last decade, fuzzy logic has supplanted conventional technologies in some scientific applications and engineering systems especially in control systems, particularly the control of the mobile robots evolving (moving) in completely unknown environments. Fuzzy logic has the ability to express the ambiguity of human thinking and translate expert knowledge into computable numerical data. Also, for real-time applications, its relatively low computational complexity makes it a good candidate. A fuzzy system consists of a set of fuzzy if-then rules. Conventionally, the selection of fuzzy if-then rules often relies on a substantial amount of heuristic observation to express the knowledge of proper strategies. Recently, many authors proved that it is possible to reproduce the operation of any standard continuous controller using fuzzy controller L. Jouffe, C. Watkins, P. Dayan Dongbing Gu, Huosheng Hu, Libor Spacek . However it is difficult for human experts to examine complex systems, then it isn't easy to design an optimized fuzzy controller. Generally the performances of Fuzzy inference system (FIS) depend on the formulation of the rules, but also the numerical specification of all the linguistic terms used and an important number of choices is given a priori, also it is not always easy or possible to extract these data using human expert. These choices are carried with empirical methods, and then the design of the FIS can prove to be long and delicate vis-a-vis the important number of parameters to determine, and can lead then to a solution with poor performance. To cope with this difficulty, many researchers have been working to find learning algorithms for fuzzy system design. These automatic methods enable to extract information when the experts’ priori knowledge is not available. The most popular approach to design Fuzzy Logic Controller (FLC) may be a kind of supervised learning where the training data is available. However, in real applications, extraction of training data is not always easy and become impossible when the cost to obtain training data is expensive. For these problems, reinforcement learning is more suitable than supervised learning. In reinforcement learning, an agent receives from its environment a critic, called reinforcement, which can be thought of as a reward or a punishment. The objective then is to generate a policy maximizing on average the sum of the rewards in the course of time, starting from experiments (state, action, reward). O pe n A cc es s D at ab as e w w w .ite ch on lin e. co m" @default.
- W1485754829 created "2016-06-24" @default.
- W1485754829 creator A5072944170 @default.
- W1485754829 creator A5088099783 @default.
- W1485754829 date "2008-10-01" @default.
- W1485754829 modified "2023-09-23" @default.
- W1485754829 title "Genetic Reinforcement Learning Algorithms for On-line Fuzzy Inference System Tuning Application to Mobile Robotic" @default.
- W1485754829 cites W1551593752 @default.
- W1485754829 cites W1796544916 @default.
- W1485754829 cites W2062706881 @default.
- W1485754829 cites W2117583043 @default.
- W1485754829 cites W2128798271 @default.
- W1485754829 cites W2131304479 @default.
- W1485754829 cites W2139877293 @default.
- W1485754829 cites W2142196876 @default.
- W1485754829 cites W2145417063 @default.
- W1485754829 doi "https://doi.org/10.5772/5847" @default.
- W1485754829 hasPublicationYear "2008" @default.
- W1485754829 type Work @default.
- W1485754829 sameAs 1485754829 @default.
- W1485754829 citedByCount "2" @default.
- W1485754829 countsByYear W14857548292013 @default.
- W1485754829 countsByYear W14857548292014 @default.
- W1485754829 crossrefType "book-chapter" @default.
- W1485754829 hasAuthorship W1485754829A5072944170 @default.
- W1485754829 hasAuthorship W1485754829A5088099783 @default.
- W1485754829 hasBestOaLocation W14857548291 @default.
- W1485754829 hasConcept C11413529 @default.
- W1485754829 hasConcept C119857082 @default.
- W1485754829 hasConcept C154945302 @default.
- W1485754829 hasConcept C186108316 @default.
- W1485754829 hasConcept C195975749 @default.
- W1485754829 hasConcept C198352243 @default.
- W1485754829 hasConcept C2524010 @default.
- W1485754829 hasConcept C2776214188 @default.
- W1485754829 hasConcept C2986395286 @default.
- W1485754829 hasConcept C2987376176 @default.
- W1485754829 hasConcept C33923547 @default.
- W1485754829 hasConcept C41008148 @default.
- W1485754829 hasConcept C58166 @default.
- W1485754829 hasConcept C8880873 @default.
- W1485754829 hasConcept C97541855 @default.
- W1485754829 hasConceptScore W1485754829C11413529 @default.
- W1485754829 hasConceptScore W1485754829C119857082 @default.
- W1485754829 hasConceptScore W1485754829C154945302 @default.
- W1485754829 hasConceptScore W1485754829C186108316 @default.
- W1485754829 hasConceptScore W1485754829C195975749 @default.
- W1485754829 hasConceptScore W1485754829C198352243 @default.
- W1485754829 hasConceptScore W1485754829C2524010 @default.
- W1485754829 hasConceptScore W1485754829C2776214188 @default.
- W1485754829 hasConceptScore W1485754829C2986395286 @default.
- W1485754829 hasConceptScore W1485754829C2987376176 @default.
- W1485754829 hasConceptScore W1485754829C33923547 @default.
- W1485754829 hasConceptScore W1485754829C41008148 @default.
- W1485754829 hasConceptScore W1485754829C58166 @default.
- W1485754829 hasConceptScore W1485754829C8880873 @default.
- W1485754829 hasConceptScore W1485754829C97541855 @default.
- W1485754829 hasLocation W14857548291 @default.
- W1485754829 hasLocation W14857548292 @default.
- W1485754829 hasOpenAccess W1485754829 @default.
- W1485754829 hasPrimaryLocation W14857548291 @default.
- W1485754829 hasRelatedWork W1496749591 @default.
- W1485754829 hasRelatedWork W1643768816 @default.
- W1485754829 hasRelatedWork W1668308244 @default.
- W1485754829 hasRelatedWork W1939649160 @default.
- W1485754829 hasRelatedWork W2091885912 @default.
- W1485754829 hasRelatedWork W2124491627 @default.
- W1485754829 hasRelatedWork W2132937254 @default.
- W1485754829 hasRelatedWork W2353340517 @default.
- W1485754829 hasRelatedWork W2562311745 @default.
- W1485754829 hasRelatedWork W3027355237 @default.
- W1485754829 isParatext "false" @default.
- W1485754829 isRetracted "false" @default.
- W1485754829 magId "1485754829" @default.
- W1485754829 workType "book-chapter" @default.