Matches in SemOpenAlex for { <https://semopenalex.org/work/W1485809810> ?p ?o ?g. }
- W1485809810 endingPage "442" @default.
- W1485809810 startingPage "440" @default.
- W1485809810 abstract "Free Access References in Figure Legends Ian S. Dunn, Ian S. DunnSearch for more papers by this author Book Author(s):Ian S. Dunn, Ian S. DunnSearch for more papers by this author First published: 14 December 2009 https://doi.org/10.1002/9780470551455.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat REFERENCES IN FIGURE LEGENDS Vogel, C., Berzuini, C., Bashton, M., Gough, J., & Teichmann, S. A. Supra-domains: evolutionary units larger than single protein domains. J Mol Biol 336, 809– 823 (2004). CrossrefCASPubMedWeb of Science®Google Scholar Berman, H., Henrick, K., & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat Struct Biol 10, 980 (2003). CrossrefCASPubMedWeb of Science®Google Scholar Vitagliano, L., Masullo, M., Sica, F., Zagari, A., & Bocchini, V. The crystal structure of Sulfolobus solfataricus elongation factor 1alpha in complex with GDP reveals novel features in nucleotide binding and exchange. EMBO J 20, 5305– 5311 (2001). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar al-Karadaghi, S., Aevarsson, A., Garber, M., Zheltonosova, J., & Liljas, A. The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4, 555– 565 (1996). CrossrefCASPubMedWeb of Science®Google Scholar Moreland, J. L., Gramada, A., Buzko, O. V., Zhang, Q., & Bourne, P. E. The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6, 21 (2005). CrossrefCASPubMedWeb of Science®Google Scholar Wagner, H. & Bauer, S. All is not Toll: new pathways in DNA recognition. J Exp Med 203, 265– 268 (2006). CrossrefPubMedWeb of Science®Google Scholar Rudolph, M. G., Stanfield, R. L., & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24, 419– 466 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Ding, Y. H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403– 411 (1998). CrossrefCASPubMedWeb of Science®Google Scholar Borbulevych, O. Y. et al. Structures of MART-126/27-35 peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. J Mol Biol 372, 1123– 1136 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Beltrami, A. et al. Citrullination-dependent differential presentation of a self-peptide by HLA-B27 subtypes. J Biol Chem 283, 27189– 27199 (2008). CrossrefCASPubMedWeb of Science®Google Scholar Stemmer, W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389– 391 (1994). CrossrefCASPubMedWeb of Science®Google Scholar Stemmer, W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91, 10747– 10751 (1994). CrossrefCASPubMedWeb of Science®Google Scholar Lubkowski, J., Hennecke, F., Pluckthun, A., & Wlodawer, A. The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Biol 5, 140– 147 (1998). CrossrefCASPubMedWeb of Science®Google Scholar Marvin, D. A. Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8, 150– 158 (1998). CrossrefCASPubMedWeb of Science®Google Scholar Deng, L. W. & Perham, R. N. Delineating the site of interaction on the pIII protein of filamentous bacteriophage fd with the F-pilus of Escherichia coli. J Mol Biol 319, 603– 614 (2002). CrossrefCASPubMedWeb of Science®Google Scholar Zahnd, C., Amstutz, P., & Pluckthun, A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4, 269– 279 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Roberts, R. W. & Szostak, J. W. RNA–peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 94, 12297– 12302 (1997). CrossrefCASPubMedWeb of Science®Google Scholar Nemoto, N., Miyamoto-Sato, E., Husimi, Y., & Yanagawa, H. In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414, 405– 408 (1997). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Kurz, M., Gu, K., & Lohse, P. A. Psoralen photo-crosslinked mRNA–puromycin conjugates: a novel template for the rapid and facile preparation of mRNA–protein fusions. Nucleic Acids Res 28, E83 (2000). CrossrefCASPubMedGoogle Scholar Mastrobattista, E. et al. High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 12, 1291– 1300 (2005). CrossrefCASPubMedWeb of Science®Google Scholar van Pouderoyen, G., Eggert, T., Jaeger, K. E., & Dijkstra, B. W. The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J Mol Biol 309, 215– 226 (2001). CrossrefCASPubMedWeb of Science®Google Scholar Acharya, P., Rajakumara, E., Sankaranarayanan, R., & Rao, N. M. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol 341, 1271– 1281 (2004). CrossrefCASPubMedWeb of Science®Google Scholar Kawasaki, K., Kondo, H., Suzuki, M., Ohgiya, S., & Tsuda, S. Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 Å resolution. Acta Crystallogr D Biol Crystallogr 58, 1168– 1174 (2002). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18, 2714– 2723 (1997). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Lang, D., Thoma, R., Henn-Sax, M., Sterner, R., & Wilmanns, M. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289, 1546– 1550 (2000). CrossrefCASPubMedWeb of Science®Google Scholar Wierenga, R. K. The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492, 193– 198 (2001). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Galperin, M. Y., Walker, D. R., & Koonin, E. V. Analogous enzymes: independent inventions in enzyme evolution. Genome Res 8, 779– 790 (1998). CrossrefCASPubMedWeb of Science®Google Scholar Varghese, J. N. et al. Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. Proc Natl Acad Sci USA 91, 2785– 2789 (1994). CrossrefCASPubMedWeb of Science®Google Scholar Hahn, M., Olsen, O., Politz, O., Borriss, R., & Heinemann, U. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-beta-glucanase. J Biol Chem 270, 3081– 3088 (1995). CrossrefCASPubMedWeb of Science®Google Scholar Subramanya, H. S., Doherty, A. J., Ashford, S. R., & Wigley, D. B. Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85, 607– 615 (1996). CrossrefCASPubMedWeb of Science®Google Scholar Dalal, S., Balasubramanian, S. & Regan, L. Protein alchemy: changing beta-sheet into alpha-helix. Nat Struct Biol 4, 548– 552 (1997). CrossrefCASPubMedWeb of Science®Google Scholar Alexander, P. A., Rozak, D. A., Orban, J., & Bryan, P. N. Directed evolution of highly homologous proteins with different folds by phage display: implications for the protein folding code. Biochemistry 44, 14045– 14054 (2005). CrossrefCASPubMedWeb of Science®Google Scholar Shi, H. & Moore, P. B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6, 1091– 1105 (2000). CrossrefCASPubMedWeb of Science®Google Scholar Wang, L., Xie, J., & Schultz, P. G. Expanding the genetic code. Annu Rev Biophys Biomol Struct 35, 225– 249 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Xie, J. & Schultz, P. G. A chemical toolkit for proteins: an expanded genetic code. Nat Rev Mol Cell Biol 7, 775– 782 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Murray, J. B., Szoke, H., Szoke, A., & Scott, W. G. Capture and visualization of a catalytic RNA enzyme-product complex using crystal lattice trapping and X-ray holographic reconstruction. Mol Cell 5, 279– 287 (2000). CrossrefCASPubMedWeb of Science®Google Scholar Tsukiji, S., Pattnaik, S. B., & Suga, H. An alcohol dehydrogenase ribozyme. Nat Struct Biol 10, 713– 717 (2003). CrossrefCASPubMedWeb of Science®Google Scholar Flinders, J. et al. Recognition of planar and nonplanar ligands in the malachite green–RNA aptamer complex. Chembiochem 5, 62– 72 (2004). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Eriksson, M. & Nielsen, P. E. Solution structure of a peptide nucleic acid–DNA duplex. Nat Struct Biol 3, 410– 413 (1996). CrossrefCASPubMedWeb of Science®Google Scholar Braden, B. C. et al. Three-dimensional structures of the free and the antigen-complexed Fab from monoclonal anti-lysozyme antibody D44.1. J Mol Biol 243, 767– 781 (1994). CrossrefCASPubMedWeb of Science®Google Scholar Hu, S. et al. Epitope mapping and structural analysis of an anti-ErbB2 antibody A21: molecular basis for tumor inhibitory mechanism. Proteins 70, 938– 949 (2008). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Stanfield, R. L., Dooley, H., Verdino, P., Flajnik, M. F., & Wilson, I. A. Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol 367, 358– 372 (2007). CrossrefCASPubMedWeb of Science®Google Scholar De Genst, E. et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 103, 4586– 4591 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Gouverneur, V. E. et al. Control of the exo and endo pathways of the Diels–Alder reaction by antibody catalysis. Science 262, 204– 208 (1993). CrossrefCASPubMedWeb of Science®Google Scholar Jacobsen, J. R. & Schultz, P. G. The scope of antibody catalysis. Curr Opin Struct Biol 5, 818– 824 (1995). CrossrefCASPubMedWeb of Science®Google Scholar Binz, H. K. et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22, 575– 582 (2004). CrossrefCASPubMedWeb of Science®Google Scholar Wahlberg, E. et al. An affibody in complex with a target protein: structure and coupled folding. Proc Natl Acad Sci USA 100, 3185– 3190 (2003). CrossrefCASPubMedWeb of Science®Google Scholar Chu, R. et al. Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography. J Mol Biol 323, 253– 262 (2002). CrossrefCASPubMedWeb of Science®Google Scholar Ku, J. & Schultz, P. G. Alternate protein frameworks for molecular recognition. Proc Natl Acad Sci USA 92, 6552– 6556 (1995). CrossrefCASPubMedWeb of Science®Google Scholar Dickinson, C. D. et al. Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol 236, 1079– 1092 (1994). CrossrefCASPubMedWeb of Science®Google Scholar Xu, L. et al. Directed evolution of high-affinity antibody mimics using mRNA display. Chem Biol 9, 933– 942 (2002). CrossrefCASPubMedWeb of Science®Google Scholar Skerra, A. Imitating the humoral immune response. Curr Opin Chem Biol 7, 683– 693 (2003). CrossrefCASPubMedWeb of Science®Google Scholar Skerra, A. Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18, 295– 304 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Murata, M. & Yasumoto, T. The structure elucidation and biological activities of high molecular weight algal toxins: maitotoxin, prymnesins and zooxanthellatoxins. Nat Prod Rep 17, 293– 314 (2000). CrossrefCASPubMedWeb of Science®Google Scholar Wright, E. M. et al. ‘Active’ sugar transport in eukaryotes. J Exp Biol 196, 197– 212 (1994). CASPubMedWeb of Science®Google Scholar Wilson, J. X. Regulation of vitamin C transport. Annu Rev Nutr 25, 105– 125 (2005). CrossrefCASPubMedWeb of Science®Google Scholar Huc, I. & Lehn, J. M. Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc Natl Acad Sci USA 94, 2106– 2110 (1997). CrossrefCASPubMedWeb of Science®Google Scholar Silverman, R. B. The Organic Chemistry of Drug Design and Drug Action, 2nd edition ( Elsevier, 2004). Google Scholar Dill, K. A., Ozkan, S. B., Shell, M. S., & Weikl, T. R. The protein folding problem. Annu Rev Biophys 37, 289– 316 (2008). CrossrefCASPubMedWeb of Science®Google Scholar Tsai, C. J. et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol (2008). CrossrefPubMedWeb of Science®Google Scholar Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364– 1368 (2003). CrossrefCASPubMedWeb of Science®Google Scholar Silverman, S. K. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 33, 6151– 6163 (2005). CrossrefCASPubMedWeb of Science®Google Scholar Breaker, R. R. Natural and engineered nucleic acids as tools to explore biology. Nature 432, 838– 845 (2004). CrossrefCASPubMedWeb of Science®Google Scholar McNamara, J. O., 2nd et al. Cell type-specific delivery of siRNAs with aptamer–siRNA chimeras. Nat Biotechnol 24, 1005– 1015 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Amarzguioui, M., Rossi, J. J., & Kim, D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett 579, 5974– 5981 (2005). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Searching for Molecular Solutions: Empirical Discovery and Its Future ReferencesRelatedInformation" @default.
- W1485809810 created "2016-06-24" @default.
- W1485809810 creator A5043668250 @default.
- W1485809810 date "2009-12-14" @default.
- W1485809810 modified "2023-10-18" @default.
- W1485809810 title "References in Figure Legends" @default.
- W1485809810 cites W1523838071 @default.
- W1485809810 cites W1605007062 @default.
- W1485809810 cites W1966886639 @default.
- W1485809810 cites W1969644422 @default.
- W1485809810 cites W1971486985 @default.
- W1485809810 cites W1975460133 @default.
- W1485809810 cites W1979211342 @default.
- W1485809810 cites W1983410419 @default.
- W1485809810 cites W1994871628 @default.
- W1485809810 cites W1995808589 @default.
- W1485809810 cites W1998293871 @default.
- W1485809810 cites W2005408415 @default.
- W1485809810 cites W2011513747 @default.
- W1485809810 cites W2011655736 @default.
- W1485809810 cites W2012542401 @default.
- W1485809810 cites W2015642465 @default.
- W1485809810 cites W2018380171 @default.
- W1485809810 cites W2021887610 @default.
- W1485809810 cites W2028493269 @default.
- W1485809810 cites W2031928642 @default.
- W1485809810 cites W2033784547 @default.
- W1485809810 cites W2034865738 @default.
- W1485809810 cites W2037042031 @default.
- W1485809810 cites W2040746692 @default.
- W1485809810 cites W2043080692 @default.
- W1485809810 cites W2048546654 @default.
- W1485809810 cites W2051997395 @default.
- W1485809810 cites W2054313195 @default.
- W1485809810 cites W2054417332 @default.
- W1485809810 cites W2055760720 @default.
- W1485809810 cites W2065371606 @default.
- W1485809810 cites W2065620086 @default.
- W1485809810 cites W2065625685 @default.
- W1485809810 cites W2065633704 @default.
- W1485809810 cites W2066332059 @default.
- W1485809810 cites W2068496672 @default.
- W1485809810 cites W2071086763 @default.
- W1485809810 cites W2079258852 @default.
- W1485809810 cites W2080426420 @default.
- W1485809810 cites W2082794795 @default.
- W1485809810 cites W2084938664 @default.
- W1485809810 cites W2085119816 @default.
- W1485809810 cites W2094580386 @default.
- W1485809810 cites W2104897337 @default.
- W1485809810 cites W2107202459 @default.
- W1485809810 cites W2123175900 @default.
- W1485809810 cites W2125735909 @default.
- W1485809810 cites W2127267750 @default.
- W1485809810 cites W2128141231 @default.
- W1485809810 cites W2128315172 @default.
- W1485809810 cites W2129020329 @default.
- W1485809810 cites W2132770291 @default.
- W1485809810 cites W2140060739 @default.
- W1485809810 cites W2142786354 @default.
- W1485809810 cites W2146074801 @default.
- W1485809810 cites W2148604640 @default.
- W1485809810 cites W2148950394 @default.
- W1485809810 cites W2151658471 @default.
- W1485809810 cites W2155376412 @default.
- W1485809810 cites W2155757096 @default.
- W1485809810 cites W2158654777 @default.
- W1485809810 cites W2195878577 @default.
- W1485809810 cites W2616139473 @default.
- W1485809810 doi "https://doi.org/10.1002/9780470551455.refs" @default.
- W1485809810 hasPublicationYear "2009" @default.
- W1485809810 type Work @default.
- W1485809810 sameAs 1485809810 @default.
- W1485809810 citedByCount "0" @default.
- W1485809810 crossrefType "other" @default.
- W1485809810 hasAuthorship W1485809810A5043668250 @default.
- W1485809810 hasBestOaLocation W14858098101 @default.
- W1485809810 hasConcept C142362112 @default.
- W1485809810 hasConcept C41008148 @default.
- W1485809810 hasConcept C95457728 @default.
- W1485809810 hasConceptScore W1485809810C142362112 @default.
- W1485809810 hasConceptScore W1485809810C41008148 @default.
- W1485809810 hasConceptScore W1485809810C95457728 @default.
- W1485809810 hasLocation W14858098101 @default.
- W1485809810 hasOpenAccess W1485809810 @default.
- W1485809810 hasPrimaryLocation W14858098101 @default.
- W1485809810 hasRelatedWork W1531601525 @default.
- W1485809810 hasRelatedWork W2748952813 @default.
- W1485809810 hasRelatedWork W2758277628 @default.
- W1485809810 hasRelatedWork W2899084033 @default.
- W1485809810 hasRelatedWork W2935909890 @default.
- W1485809810 hasRelatedWork W2948807893 @default.
- W1485809810 hasRelatedWork W3173606202 @default.
- W1485809810 hasRelatedWork W3183948672 @default.
- W1485809810 hasRelatedWork W2778153218 @default.
- W1485809810 hasRelatedWork W3110381201 @default.
- W1485809810 isParatext "false" @default.
- W1485809810 isRetracted "false" @default.