Matches in SemOpenAlex for { <https://semopenalex.org/work/W1486005382> ?p ?o ?g. }
- W1486005382 abstract "Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water flux in the subsurface is difficult, prompting investigators to pursue indirect methods. Geophysical approaches that exploit the coupled relation between heat and water transport provide an attractive class of methods that have become widely used in investigations of recharge. This appendix reviews the application of heat to the problem of recharge estimation. Its objective is to provide a fairly complete account of the theoretical underpinnings together with a comprehensive review of thermal methods in practice. Investigators began using subsurface temperatures to delineate recharge areas and infer directions of ground-water flow around the turn of the 20th century. During the 1960s, analytical and numerical solutions for simplified heat- and fluid-flow problems became available. These early solutions, though one-dimensional and otherwise restricted, provided a strong impetus for applying thermal methods to problems of liquid and vapor movement in systems ranging from soils to geothermal reservoirs. Today?s combination of fast processors, massive data-storage units, and efficient matrix techniques provide numerical solutions to complex, three-dimensional transport problems. These approaches allow researchers to take advantage of the considerable information content routinely achievable in high-accuracy temperature work." @default.
- W1486005382 created "2016-06-24" @default.
- W1486005382 creator A5021875253 @default.
- W1486005382 creator A5023755926 @default.
- W1486005382 creator A5070999550 @default.
- W1486005382 date "2007-01-01" @default.
- W1486005382 modified "2023-10-09" @default.
- W1486005382 title "Thermal Methods for Investigating Ground-Water Recharge" @default.
- W1486005382 cites W105925340 @default.
- W1486005382 cites W119677077 @default.
- W1486005382 cites W1489854318 @default.
- W1486005382 cites W1491668179 @default.
- W1486005382 cites W1492942587 @default.
- W1486005382 cites W1532893001 @default.
- W1486005382 cites W1572317519 @default.
- W1486005382 cites W1584211945 @default.
- W1486005382 cites W1588272770 @default.
- W1486005382 cites W1599077892 @default.
- W1486005382 cites W1659147692 @default.
- W1486005382 cites W1673524480 @default.
- W1486005382 cites W1821220381 @default.
- W1486005382 cites W1970939958 @default.
- W1486005382 cites W1973644956 @default.
- W1486005382 cites W1978167165 @default.
- W1486005382 cites W1978224877 @default.
- W1486005382 cites W1981004888 @default.
- W1486005382 cites W1982260755 @default.
- W1486005382 cites W1982448001 @default.
- W1486005382 cites W1988095119 @default.
- W1486005382 cites W1996845820 @default.
- W1486005382 cites W1998513308 @default.
- W1486005382 cites W2001191033 @default.
- W1486005382 cites W2002831627 @default.
- W1486005382 cites W2003525939 @default.
- W1486005382 cites W2004592333 @default.
- W1486005382 cites W2007409849 @default.
- W1486005382 cites W2014334106 @default.
- W1486005382 cites W2014343772 @default.
- W1486005382 cites W2018247506 @default.
- W1486005382 cites W2025398017 @default.
- W1486005382 cites W2032600630 @default.
- W1486005382 cites W2032670712 @default.
- W1486005382 cites W2047257563 @default.
- W1486005382 cites W2047651112 @default.
- W1486005382 cites W2054647333 @default.
- W1486005382 cites W2054896606 @default.
- W1486005382 cites W2057405396 @default.
- W1486005382 cites W2068579299 @default.
- W1486005382 cites W2071757719 @default.
- W1486005382 cites W2078022896 @default.
- W1486005382 cites W2079745299 @default.
- W1486005382 cites W2082621743 @default.
- W1486005382 cites W2116795773 @default.
- W1486005382 cites W2122604585 @default.
- W1486005382 cites W2137271966 @default.
- W1486005382 cites W2137820449 @default.
- W1486005382 cites W2462183283 @default.
- W1486005382 cites W2462447341 @default.
- W1486005382 cites W2605632769 @default.
- W1486005382 cites W409298205 @default.
- W1486005382 cites W423411964 @default.
- W1486005382 cites W576303495 @default.
- W1486005382 cites W608910251 @default.
- W1486005382 cites W757975212 @default.
- W1486005382 cites W2476163043 @default.
- W1486005382 doi "https://doi.org/10.3133/pp17031" @default.
- W1486005382 hasPublicationYear "2007" @default.
- W1486005382 type Work @default.
- W1486005382 sameAs 1486005382 @default.
- W1486005382 citedByCount "17" @default.
- W1486005382 countsByYear W14860053822013 @default.
- W1486005382 countsByYear W14860053822014 @default.
- W1486005382 countsByYear W14860053822015 @default.
- W1486005382 countsByYear W14860053822017 @default.
- W1486005382 countsByYear W14860053822018 @default.
- W1486005382 countsByYear W14860053822019 @default.
- W1486005382 countsByYear W14860053822021 @default.
- W1486005382 crossrefType "journal-article" @default.
- W1486005382 hasAuthorship W1486005382A5021875253 @default.
- W1486005382 hasAuthorship W1486005382A5023755926 @default.
- W1486005382 hasAuthorship W1486005382A5070999550 @default.
- W1486005382 hasConcept C127313418 @default.
- W1486005382 hasConcept C153294291 @default.
- W1486005382 hasConcept C153400128 @default.
- W1486005382 hasConcept C174091901 @default.
- W1486005382 hasConcept C176783924 @default.
- W1486005382 hasConcept C187320778 @default.
- W1486005382 hasConcept C187606762 @default.
- W1486005382 hasConcept C18903297 @default.
- W1486005382 hasConcept C205649164 @default.
- W1486005382 hasConcept C39432304 @default.
- W1486005382 hasConcept C39769621 @default.
- W1486005382 hasConcept C75622301 @default.
- W1486005382 hasConcept C76177295 @default.
- W1486005382 hasConcept C76886044 @default.
- W1486005382 hasConcept C86803240 @default.
- W1486005382 hasConceptScore W1486005382C127313418 @default.
- W1486005382 hasConceptScore W1486005382C153294291 @default.
- W1486005382 hasConceptScore W1486005382C153400128 @default.
- W1486005382 hasConceptScore W1486005382C174091901 @default.