Matches in SemOpenAlex for { <https://semopenalex.org/work/W1486222704> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1486222704 abstract "Protein-protein interactions (PPI) play a key role in various aspects of the structural and functional organization of the cell. Knowledge about them unveils the molecular mechanisms of biological processes. A number of databases such as MINT (Zanzoni et al., 2002), BIND (Bader et al., 2003), and DIP (Xenarios et al., 2002) have been created to store protein interaction information in structured and standard formats. However, the amount of biomedical literature regarding protein interactions is increasing rapidly and it is difficult for interaction database curators to detect and curate protein interaction information manually. Thus, most of the protein interaction information remains hidden in the text of the papers in the literature. Therefore, automatic extraction of protein interaction information from biomedical literature has become an important research area. Existing PPI works can be roughly divided into three categories: Manual pattern engineering approaches, Grammar engineering approaches and Machine learning approaches. Manual pattern engineering approaches define a set of rules for possible textual relationships, called patterns, which encode similar structures in expressing relationships. The SUISEKI system uses regular expressions, with probabilities that reflect the experimental accuracy of each pattern to extract interactions into predefined frame structures (Blaschke & Valencia, 2002). Ono et al. manually defined a set of rules based on syntactic features to preprocess complex sentences, with negation structures considered as well (Ono et al., 2001). The BioRAT system uses manually engineered templates that combine lexical and semantic information to identify protein interactions (Corney et al., 2004). Such manual pattern engineering approaches for information extraction are very hard to scale up to large document collections since they require labor-intensive and skilldependent pattern engineering. Grammar engineering approaches use manually generated specialized grammar rules that perform a deep parse of the sentences. Sekimizu et al. used shallow parser, EngCG, to generate syntactic, morphological, and boundary tags (Sekimizu et al., 1998). Based on the tagging results, subjects and objects were recognized for the most frequently used verbs. Fundel et al. proposed RelEx based on the dependency parse trees to extract relations (Fundel et al., 2007). Machine learning techniques for extracting protein interaction information have gained interest in the recent years. In most recent work on machine learning for PPI extraction, the PPI extraction task is casted as learning a decision function that determines for each" @default.
- W1486222704 created "2016-06-24" @default.
- W1486222704 creator A5023931221 @default.
- W1486222704 creator A5051597671 @default.
- W1486222704 creator A5058257760 @default.
- W1486222704 date "2011-01-08" @default.
- W1486222704 modified "2023-09-23" @default.
- W1486222704 title "Protein-Protein Interactions Extraction from Biomedical Literatures" @default.
- W1486222704 cites W1485730427 @default.
- W1486222704 cites W1513874326 @default.
- W1486222704 cites W1514707997 @default.
- W1486222704 cites W1558318887 @default.
- W1486222704 cites W1563088657 @default.
- W1486222704 cites W1790194223 @default.
- W1486222704 cites W1982428412 @default.
- W1486222704 cites W1990794790 @default.
- W1486222704 cites W1996699506 @default.
- W1486222704 cites W2097960255 @default.
- W1486222704 cites W2103316358 @default.
- W1486222704 cites W2109070394 @default.
- W1486222704 cites W2109098567 @default.
- W1486222704 cites W2114663556 @default.
- W1486222704 cites W2115880858 @default.
- W1486222704 cites W2122904379 @default.
- W1486222704 cites W2123280311 @default.
- W1486222704 cites W2127713198 @default.
- W1486222704 cites W2132288458 @default.
- W1486222704 cites W2138627627 @default.
- W1486222704 cites W2139709458 @default.
- W1486222704 cites W2141605886 @default.
- W1486222704 cites W2144452292 @default.
- W1486222704 cites W2151023586 @default.
- W1486222704 cites W2152269015 @default.
- W1486222704 cites W2155320925 @default.
- W1486222704 cites W2160383703 @default.
- W1486222704 cites W2163362093 @default.
- W1486222704 cites W2166111585 @default.
- W1486222704 cites W2166474856 @default.
- W1486222704 cites W224064951 @default.
- W1486222704 cites W2917293077 @default.
- W1486222704 cites W86561409 @default.
- W1486222704 doi "https://doi.org/10.5772/13552" @default.
- W1486222704 hasPublicationYear "2011" @default.
- W1486222704 type Work @default.
- W1486222704 sameAs 1486222704 @default.
- W1486222704 citedByCount "2" @default.
- W1486222704 countsByYear W14862227042013 @default.
- W1486222704 countsByYear W14862227042017 @default.
- W1486222704 crossrefType "book-chapter" @default.
- W1486222704 hasAuthorship W1486222704A5023931221 @default.
- W1486222704 hasAuthorship W1486222704A5051597671 @default.
- W1486222704 hasAuthorship W1486222704A5058257760 @default.
- W1486222704 hasBestOaLocation W14862227041 @default.
- W1486222704 hasConcept C185592680 @default.
- W1486222704 hasConcept C41008148 @default.
- W1486222704 hasConcept C43617362 @default.
- W1486222704 hasConcept C4725764 @default.
- W1486222704 hasConcept C70721500 @default.
- W1486222704 hasConcept C86803240 @default.
- W1486222704 hasConceptScore W1486222704C185592680 @default.
- W1486222704 hasConceptScore W1486222704C41008148 @default.
- W1486222704 hasConceptScore W1486222704C43617362 @default.
- W1486222704 hasConceptScore W1486222704C4725764 @default.
- W1486222704 hasConceptScore W1486222704C70721500 @default.
- W1486222704 hasConceptScore W1486222704C86803240 @default.
- W1486222704 hasLocation W14862227041 @default.
- W1486222704 hasOpenAccess W1486222704 @default.
- W1486222704 hasPrimaryLocation W14862227041 @default.
- W1486222704 hasRelatedWork W2096946506 @default.
- W1486222704 hasRelatedWork W2130043461 @default.
- W1486222704 hasRelatedWork W2350741829 @default.
- W1486222704 hasRelatedWork W2358668433 @default.
- W1486222704 hasRelatedWork W2376932109 @default.
- W1486222704 hasRelatedWork W2382290278 @default.
- W1486222704 hasRelatedWork W2390279801 @default.
- W1486222704 hasRelatedWork W2748952813 @default.
- W1486222704 hasRelatedWork W2899084033 @default.
- W1486222704 hasRelatedWork W3004735627 @default.
- W1486222704 isParatext "false" @default.
- W1486222704 isRetracted "false" @default.
- W1486222704 magId "1486222704" @default.
- W1486222704 workType "book-chapter" @default.