Matches in SemOpenAlex for { <https://semopenalex.org/work/W1487009142> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1487009142 abstract "Environment of multi-agent systems is often very complex. Therefore it is sometimes difficult, or even impossible, to specify and implement all system details a priori. Application of machine learning algorithms allows to overcome this problem. One can implement an agent that is not perfect, but improves its performance. There are many learning methods that can be used to generate knowledge or strategy in a multi-agent system. Choosing an appropriate one, which fits a given problem, can be a difficult task. The aim of the research presented here was to test applicability of reinforcement learning and supervised rule learning strategies in the same problem. Reinforcement learning is the most common technique in multi-agent systems. It allows to generate a strategy for an agent in a situation, when the environment provides some feedback after the agent has acted. Symbolic, supervised learning is not so widely used in multi-agent systems. There are many methods belonging to this class that generate knowledge from data. Here a rule induction algorithm is used. It generates a rule-based classifier, which assigns a class to a given example. As an input it needs examples, where the class is assigned by some teacher. We show how observation of other agents’ actions can be used instead of the teacher. As an environment the Fish Banks game is used. It is a simulation, in which agents run fishing companies and its main task is to decide how many ships send for fishing, and where to send them. Four types of agents are created. Reinforcement learning agent and supervised learning agent improve their allocation performance using appropriate learning strategy. As a reference two additional types of agents are introduced: random agent, which chooses allocation action randomly, and predicting agent, which assumes that fishing results will be the same as in previous round, and allocates ships using this simple prediction. In the next section related research on learning in multi-agent systems is briefly presented. The third section explains details of the environment, architecture and behaviours of the agents. Next, results of several experiments, which were performed to compare mentioned learning methods, are presented and discussed. Results show that both of them give good results. However; both of them have some advantages and disadvantages. In the last two sections conclusions and further research are presented. O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg" @default.
- W1487009142 created "2016-06-24" @default.
- W1487009142 creator A5020025452 @default.
- W1487009142 date "2009-01-01" @default.
- W1487009142 modified "2023-10-17" @default.
- W1487009142 title "Supervised Rule Learning and Reinforcement Learning in A Multi-Agent System for the Fish Banks Game" @default.
- W1487009142 cites W2118254385 @default.
- W1487009142 cites W2131154421 @default.
- W1487009142 cites W2132713246 @default.
- W1487009142 cites W2147492008 @default.
- W1487009142 cites W2167932310 @default.
- W1487009142 cites W2235005250 @default.
- W1487009142 cites W3011120880 @default.
- W1487009142 cites W3021909058 @default.
- W1487009142 cites W3121311682 @default.
- W1487009142 cites W90487644 @default.
- W1487009142 doi "https://doi.org/10.5772/6672" @default.
- W1487009142 hasPublicationYear "2009" @default.
- W1487009142 type Work @default.
- W1487009142 sameAs 1487009142 @default.
- W1487009142 citedByCount "1" @default.
- W1487009142 countsByYear W14870091422013 @default.
- W1487009142 crossrefType "journal-article" @default.
- W1487009142 hasAuthorship W1487009142A5020025452 @default.
- W1487009142 hasConcept C119857082 @default.
- W1487009142 hasConcept C127413603 @default.
- W1487009142 hasConcept C136389625 @default.
- W1487009142 hasConcept C154945302 @default.
- W1487009142 hasConcept C199190896 @default.
- W1487009142 hasConcept C201995342 @default.
- W1487009142 hasConcept C2777212361 @default.
- W1487009142 hasConcept C2780451532 @default.
- W1487009142 hasConcept C41008148 @default.
- W1487009142 hasConcept C50644808 @default.
- W1487009142 hasConcept C95623464 @default.
- W1487009142 hasConcept C97541855 @default.
- W1487009142 hasConceptScore W1487009142C119857082 @default.
- W1487009142 hasConceptScore W1487009142C127413603 @default.
- W1487009142 hasConceptScore W1487009142C136389625 @default.
- W1487009142 hasConceptScore W1487009142C154945302 @default.
- W1487009142 hasConceptScore W1487009142C199190896 @default.
- W1487009142 hasConceptScore W1487009142C201995342 @default.
- W1487009142 hasConceptScore W1487009142C2777212361 @default.
- W1487009142 hasConceptScore W1487009142C2780451532 @default.
- W1487009142 hasConceptScore W1487009142C41008148 @default.
- W1487009142 hasConceptScore W1487009142C50644808 @default.
- W1487009142 hasConceptScore W1487009142C95623464 @default.
- W1487009142 hasConceptScore W1487009142C97541855 @default.
- W1487009142 hasLocation W14870091421 @default.
- W1487009142 hasOpenAccess W1487009142 @default.
- W1487009142 hasPrimaryLocation W14870091421 @default.
- W1487009142 hasRelatedWork W149216785 @default.
- W1487009142 hasRelatedWork W1534906943 @default.
- W1487009142 hasRelatedWork W1546568226 @default.
- W1487009142 hasRelatedWork W1588267837 @default.
- W1487009142 hasRelatedWork W1601125311 @default.
- W1487009142 hasRelatedWork W191985209 @default.
- W1487009142 hasRelatedWork W1925600676 @default.
- W1487009142 hasRelatedWork W2103064945 @default.
- W1487009142 hasRelatedWork W2128786740 @default.
- W1487009142 hasRelatedWork W2145739724 @default.
- W1487009142 hasRelatedWork W2164892942 @default.
- W1487009142 hasRelatedWork W2272929109 @default.
- W1487009142 hasRelatedWork W2809485258 @default.
- W1487009142 hasRelatedWork W2980297462 @default.
- W1487009142 hasRelatedWork W3106461325 @default.
- W1487009142 hasRelatedWork W3186326521 @default.
- W1487009142 hasRelatedWork W362282400 @default.
- W1487009142 hasRelatedWork W76760840 @default.
- W1487009142 hasRelatedWork W2011716068 @default.
- W1487009142 hasRelatedWork W2133672223 @default.
- W1487009142 isParatext "false" @default.
- W1487009142 isRetracted "false" @default.
- W1487009142 magId "1487009142" @default.
- W1487009142 workType "article" @default.