Matches in SemOpenAlex for { <https://semopenalex.org/work/W1487204805> ?p ?o ?g. }
- W1487204805 abstract "The explosive growth of the World-Wide-Web and the emergence of ecommerce are the major two factors that have led to the development of recommender systems (Resnick and Varian, 1997). The main task of recommender systems is to learn from users and recommend items (e.g. information, products or books) that match the users’ personal preferences. Recommender systems have been an active research area for more than a decade. Many different techniques and systems with distinct strengths have been developed to generate better quality recommendations. One of the main factors that affect recommenders’ recommendation quality is the amount of information resources that are available to the recommenders. The main feature of the recommender systems is their ability to make personalised recommendations for different individuals. However, for many ecommerce sites, it is difficult for them to obtain sufficient knowledge about their users. Hence, the recommendations they provided to their users are often poor and not personalised. This information insufficiency problem is commonly referred to as the cold-start problem. Most existing research on recommender systems focus on developing techniques to better utilise the available information resources to achieve better recommendation quality. However, while the amount of available data and information remains insufficient, these techniques can only provide limited improvements to the overall recommendation quality. In this thesis, a novel and intuitive approach towards improving recommendation quality and alleviating the cold-start problem is attempted. This approach is enriching the information resources. It can be easily observed that when there is sufficient information and knowledge base to support recommendation making, even the simplest recommender systems can outperform the sophisticated ones with limited information resources. Two possible strategies are suggested in this thesis to achieve the proposed information enrichment for recommenders:•The first strategy suggests that information resources can be enriched by considering other information or data facets. Specifically, a taxonomy-based recommender, Hybrid Taxonomy Recommender (HTR), is presented in this thesis. HTR exploits the relationship between users’ taxonomic preferences and item preferences from the combination of the widely available product taxonomic information and the existing user rating data, and it then utilises this taxonomic preference to item preference relation to generate high quality recommendations. •The second strategy suggests that information resources can be enriched simply by obtaining information resources from other parties. In this thesis, a distributed recommender framework, Ecommerce-oriented Distributed Recommender System (EDRS), is proposed. The proposed EDRS allows multiple recommenders from different parties (i.e. organisations or ecommerce sites) to share recommendations and information resources with each other in order to improve their recommendation quality. Based on the results obtained from the experiments conducted in this thesis, the proposed systems and techniques have achieved great improvement in both making quality recommendations and alleviating the cold-start problem." @default.
- W1487204805 created "2016-06-24" @default.
- W1487204805 creator A5026631781 @default.
- W1487204805 date "2008-01-01" @default.
- W1487204805 modified "2023-09-23" @default.
- W1487204805 title "Information enrichment for quality recommender systems" @default.
- W1487204805 cites W118334332 @default.
- W1487204805 cites W148103248 @default.
- W1487204805 cites W1488971269 @default.
- W1487204805 cites W1490338671 @default.
- W1487204805 cites W1495821370 @default.
- W1487204805 cites W1501500081 @default.
- W1487204805 cites W1509627219 @default.
- W1487204805 cites W1532852017 @default.
- W1487204805 cites W1536019158 @default.
- W1487204805 cites W1552024526 @default.
- W1487204805 cites W1552046303 @default.
- W1487204805 cites W1552648807 @default.
- W1487204805 cites W1570159982 @default.
- W1487204805 cites W1571645041 @default.
- W1487204805 cites W1576654193 @default.
- W1487204805 cites W1585610988 @default.
- W1487204805 cites W1587718046 @default.
- W1487204805 cites W1588894109 @default.
- W1487204805 cites W1593078565 @default.
- W1487204805 cites W1670263352 @default.
- W1487204805 cites W1678393259 @default.
- W1487204805 cites W1832221731 @default.
- W1487204805 cites W1836747097 @default.
- W1487204805 cites W1957537378 @default.
- W1487204805 cites W1966553486 @default.
- W1487204805 cites W1966992441 @default.
- W1487204805 cites W1971040550 @default.
- W1487204805 cites W1974147361 @default.
- W1487204805 cites W1977892887 @default.
- W1487204805 cites W1980020810 @default.
- W1487204805 cites W1989938746 @default.
- W1487204805 cites W1991822588 @default.
- W1487204805 cites W1992053235 @default.
- W1487204805 cites W1992419399 @default.
- W1487204805 cites W1992742427 @default.
- W1487204805 cites W1996283866 @default.
- W1487204805 cites W1999047234 @default.
- W1487204805 cites W1999668761 @default.
- W1487204805 cites W2002985443 @default.
- W1487204805 cites W2005405160 @default.
- W1487204805 cites W2009657880 @default.
- W1487204805 cites W2020480318 @default.
- W1487204805 cites W2029507558 @default.
- W1487204805 cites W2031240623 @default.
- W1487204805 cites W2037717074 @default.
- W1487204805 cites W2040974535 @default.
- W1487204805 cites W2042281163 @default.
- W1487204805 cites W2043403353 @default.
- W1487204805 cites W2056859949 @default.
- W1487204805 cites W2066590388 @default.
- W1487204805 cites W2068159075 @default.
- W1487204805 cites W2075340384 @default.
- W1487204805 cites W2082945558 @default.
- W1487204805 cites W2097129520 @default.
- W1487204805 cites W2106962848 @default.
- W1487204805 cites W2107961623 @default.
- W1487204805 cites W2110325612 @default.
- W1487204805 cites W2112430581 @default.
- W1487204805 cites W2113273124 @default.
- W1487204805 cites W2116139015 @default.
- W1487204805 cites W2116819687 @default.
- W1487204805 cites W2117311203 @default.
- W1487204805 cites W2122410182 @default.
- W1487204805 cites W2124029832 @default.
- W1487204805 cites W2124591829 @default.
- W1487204805 cites W2127203709 @default.
- W1487204805 cites W2128402656 @default.
- W1487204805 cites W2128629010 @default.
- W1487204805 cites W2132285835 @default.
- W1487204805 cites W2136972443 @default.
- W1487204805 cites W2137572165 @default.
- W1487204805 cites W2137728971 @default.
- W1487204805 cites W2140405352 @default.
- W1487204805 cites W2142144955 @default.
- W1487204805 cites W2144371241 @default.
- W1487204805 cites W2147859400 @default.
- W1487204805 cites W2147963107 @default.
- W1487204805 cites W2147973214 @default.
- W1487204805 cites W2151281839 @default.
- W1487204805 cites W2151408086 @default.
- W1487204805 cites W2152208379 @default.
- W1487204805 cites W2153789730 @default.
- W1487204805 cites W2153889650 @default.
- W1487204805 cites W2159094788 @default.
- W1487204805 cites W2160223800 @default.
- W1487204805 cites W2160326364 @default.
- W1487204805 cites W2160558706 @default.
- W1487204805 cites W2163015271 @default.
- W1487204805 cites W2164706250 @default.
- W1487204805 cites W2183921988 @default.
- W1487204805 cites W2317700292 @default.
- W1487204805 cites W2470087945 @default.
- W1487204805 cites W2494048233 @default.
- W1487204805 cites W2622684336 @default.