Matches in SemOpenAlex for { <https://semopenalex.org/work/W1487230561> ?p ?o ?g. }
- W1487230561 endingPage "504" @default.
- W1487230561 startingPage "485" @default.
- W1487230561 abstract "Neurons in many regions of the CNS (e.g., cortical areas, thalamic nuclei) are heterogeneous with regard to their afferent and efferent connections. Using the hamster retinofugal system as a model, we investigated the mechanisms by which such connectional heterogeneity arises during ontogeny. Retinal ganglion cell axons were labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Dil) in paraformaldehyde-fixed tissue. The fluorescent label was photoconverted to a diaminobenzidine reaction product. The morphology of the axons, including their trajectories, branching patterns, and growth cones, was studied at the level of the dorsal lateral geniculate nucleus (LGd) from embryonic day 14 to adulthood. In adult hamsters, axons of retinal ganglion cells (RGCs) are spatially segregated at the level of the lateral geniculate nucleus into a superficial optic tract, situated just beneath the pia, and an internal optic tract consisting of fascicles running parallel to the pia within the geniculate. All retinofugal axons project to the midbrain, but only superficial optic tract axons emit collaterals to the LGd. During development, axons in both divisions of the optic tract emit collaterals to the LGd, but by postnatal day 15, collaterals of internal optic tract axons are virtually entirely eliminated, whereas those of superficial optic tract axons have elaborated terminal arbors. Thus, the heterogeneity among different classes of RGCs with respect to their efferent connections emerges by the selective stabilization, by each class, of a unique subset of connections from an initially widespread set shared by all classes. Thalamic collaterals of RGC axons emerge along established axon trunks, not by bifurcation of the growing tip. This occurs after the axons have grown past the thalamus and, presumably, entered their targets in the midbrain. Growth cones at the tips of elongating axon trunks are larger in size and have a more “complex” morphology compared to the growth cones on collaterals. Axons of RGCs develop in 3 morphologically distinct growth states. First, they elongate to their most distant targets in the midbrain. Then, they simultaneously emit unbranched or poorly branched collaterals to multiple targets. Finally, they elaborate terminal arbors in their definitive targets and eliminate their other collaterals. This developmental strategy may be paradigmatic for the formation of long CNS pathways with multiple targets. Furthermore, these data document, at the single-axon level, the steps in the elaboration and withdrawal of transient neuronal projections." @default.
- W1487230561 created "2016-06-24" @default.
- W1487230561 creator A5005907920 @default.
- W1487230561 creator A5089659362 @default.
- W1487230561 date "1991-02-01" @default.
- W1487230561 modified "2023-10-16" @default.
- W1487230561 title "Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets" @default.
- W1487230561 cites W1481475174 @default.
- W1487230561 cites W1527110415 @default.
- W1487230561 cites W1600079321 @default.
- W1487230561 cites W1606119806 @default.
- W1487230561 cites W1615533678 @default.
- W1487230561 cites W1653983266 @default.
- W1487230561 cites W1823258564 @default.
- W1487230561 cites W1883988145 @default.
- W1487230561 cites W1964039942 @default.
- W1487230561 cites W1964685394 @default.
- W1487230561 cites W1966801871 @default.
- W1487230561 cites W1968234976 @default.
- W1487230561 cites W1971142139 @default.
- W1487230561 cites W1976200575 @default.
- W1487230561 cites W1979608565 @default.
- W1487230561 cites W1989961324 @default.
- W1487230561 cites W1991022477 @default.
- W1487230561 cites W1994794974 @default.
- W1487230561 cites W2002279787 @default.
- W1487230561 cites W2005971191 @default.
- W1487230561 cites W2008320280 @default.
- W1487230561 cites W2011671545 @default.
- W1487230561 cites W2016529329 @default.
- W1487230561 cites W2024933879 @default.
- W1487230561 cites W2033467576 @default.
- W1487230561 cites W2034120829 @default.
- W1487230561 cites W2036106577 @default.
- W1487230561 cites W2042960453 @default.
- W1487230561 cites W2046394271 @default.
- W1487230561 cites W2048314416 @default.
- W1487230561 cites W2049325499 @default.
- W1487230561 cites W2050109791 @default.
- W1487230561 cites W2053811617 @default.
- W1487230561 cites W2054093997 @default.
- W1487230561 cites W2054170087 @default.
- W1487230561 cites W2069346071 @default.
- W1487230561 cites W2069387127 @default.
- W1487230561 cites W2078842806 @default.
- W1487230561 cites W2082922514 @default.
- W1487230561 cites W2085947272 @default.
- W1487230561 cites W2089189458 @default.
- W1487230561 cites W2090310703 @default.
- W1487230561 cites W2091088099 @default.
- W1487230561 cites W2092874909 @default.
- W1487230561 cites W2094520489 @default.
- W1487230561 cites W2096391797 @default.
- W1487230561 cites W2123238493 @default.
- W1487230561 cites W2125346623 @default.
- W1487230561 cites W2130077267 @default.
- W1487230561 cites W2139663093 @default.
- W1487230561 cites W2141435782 @default.
- W1487230561 cites W2153058676 @default.
- W1487230561 cites W2161976422 @default.
- W1487230561 cites W2167682665 @default.
- W1487230561 cites W2182552939 @default.
- W1487230561 cites W2338813932 @default.
- W1487230561 cites W769489368 @default.
- W1487230561 doi "https://doi.org/10.1523/jneurosci.11-02-00485.1991" @default.
- W1487230561 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6575208" @default.
- W1487230561 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/1992013" @default.
- W1487230561 hasPublicationYear "1991" @default.
- W1487230561 type Work @default.
- W1487230561 sameAs 1487230561 @default.
- W1487230561 citedByCount "90" @default.
- W1487230561 countsByYear W14872305612013 @default.
- W1487230561 countsByYear W14872305612015 @default.
- W1487230561 countsByYear W14872305612018 @default.
- W1487230561 countsByYear W14872305612019 @default.
- W1487230561 countsByYear W14872305612023 @default.
- W1487230561 crossrefType "journal-article" @default.
- W1487230561 hasAuthorship W1487230561A5005907920 @default.
- W1487230561 hasAuthorship W1487230561A5089659362 @default.
- W1487230561 hasBestOaLocation W14872305611 @default.
- W1487230561 hasConcept C105702510 @default.
- W1487230561 hasConcept C119088629 @default.
- W1487230561 hasConcept C169760540 @default.
- W1487230561 hasConcept C2776362945 @default.
- W1487230561 hasConcept C2776512019 @default.
- W1487230561 hasConcept C2777093970 @default.
- W1487230561 hasConcept C2777452900 @default.
- W1487230561 hasConcept C2777624874 @default.
- W1487230561 hasConcept C2779246727 @default.
- W1487230561 hasConcept C2779263132 @default.
- W1487230561 hasConcept C2779530196 @default.
- W1487230561 hasConcept C2780723820 @default.
- W1487230561 hasConcept C2780837183 @default.
- W1487230561 hasConcept C36388723 @default.
- W1487230561 hasConcept C529278444 @default.
- W1487230561 hasConcept C552161191 @default.
- W1487230561 hasConcept C70192387 @default.
- W1487230561 hasConcept C86803240 @default.