Matches in SemOpenAlex for { <https://semopenalex.org/work/W1487304328> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W1487304328 abstract "We consider two broad setups: (1) solving decision problems using choice models, and (2) learning the choice models. In both setups, data available corresponds to marginal information about the underlying distribution over rankings. So the problems essentially boil down to designing the 'right' criterion to pick a model from one of the (several) distributions that are consistent with the available marginal information.First, we consider a central decision problem in operations management (OM): find an assortment of products that maximizes the revenues subject to a capacity constraint on the size of the assortment. Solving this problem requires two components: (a) predicting revenues for assortments and (b) searching over all subsets of a certain size for the optimal assortment. In order to predict revenues for an assortment, of all models consistent with the data, we use the choice model that results in the 'worst-case' revenue. We derive theoretical guarantees for the predictions, and show that the accuracy of predictions is good for the cases when the choice data comes from several different parametric models. Finally, by applying our approach to real-world sales transaction data from a major US automaker, we demonstrate an improvement in accuracy of around 20% over state-of-the-art parametric approaches. Once we have revenue predictions, we consider the problem of finding the optimal assortment. It has been shown that this problem is provably hard for most of the important families of parametric of choice models, except the multinomial logit (MNL) model. In addition, most of the approximation schemes proposed in the literature are tailored to a specific parametric structure. We deviate from this and propose a general algorithm to find the optimal assortment assuming access to only a subroutine that gives revenue predictions; this means that the algorithm can be applied with any choice model. We prove that when the underlying choice model is the MNL model, our algorithm can find the optimal assortment efficiently.Next, we consider the problem of learning the underlying distribution from the given marginal information. For that, of all the models consistent with the data, we propose to select the sparsest or simplest model, where we measure sparsity as the support size of the distribution. Finding the sparsest distribution is hard in general, so we restrict our search to what we call the 'signature family' to obtain an algorithm that is computationally efficient compared to the brute-force approach. We show that the price one pays for restricting the search to the signature family is minimal by establishing that for a large class of models, there exists a enough model in the signature family that fits the given marginal information well. We demonstrate the efficacy of learning sparse models on the well-known American Psychological Association (APA) dataset by showing that our sparse approximation manages to capture useful structural properties of the underlying model. Finally, our results suggest that signature condition can be considered an alternative to the recently popularized Restricted Null Space condition for efficient recovery of sparse models. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.)" @default.
- W1487304328 created "2016-06-24" @default.
- W1487304328 creator A5053861695 @default.
- W1487304328 date "2011-01-01" @default.
- W1487304328 modified "2023-09-23" @default.
- W1487304328 title "Nonparametric choice modeling: applications to operations management" @default.
- W1487304328 hasPublicationYear "2011" @default.
- W1487304328 type Work @default.
- W1487304328 sameAs 1487304328 @default.
- W1487304328 citedByCount "1" @default.
- W1487304328 countsByYear W14873043282012 @default.
- W1487304328 crossrefType "dissertation" @default.
- W1487304328 hasAuthorship W1487304328A5053861695 @default.
- W1487304328 hasConcept C10138342 @default.
- W1487304328 hasConcept C102366305 @default.
- W1487304328 hasConcept C105795698 @default.
- W1487304328 hasConcept C117251300 @default.
- W1487304328 hasConcept C117568660 @default.
- W1487304328 hasConcept C119857082 @default.
- W1487304328 hasConcept C126255220 @default.
- W1487304328 hasConcept C127722929 @default.
- W1487304328 hasConcept C149782125 @default.
- W1487304328 hasConcept C162324750 @default.
- W1487304328 hasConcept C182306322 @default.
- W1487304328 hasConcept C195487862 @default.
- W1487304328 hasConcept C199360897 @default.
- W1487304328 hasConcept C2524010 @default.
- W1487304328 hasConcept C2776036281 @default.
- W1487304328 hasConcept C2781386248 @default.
- W1487304328 hasConcept C33923547 @default.
- W1487304328 hasConcept C41008148 @default.
- W1487304328 hasConcept C42475967 @default.
- W1487304328 hasConcept C75949130 @default.
- W1487304328 hasConceptScore W1487304328C10138342 @default.
- W1487304328 hasConceptScore W1487304328C102366305 @default.
- W1487304328 hasConceptScore W1487304328C105795698 @default.
- W1487304328 hasConceptScore W1487304328C117251300 @default.
- W1487304328 hasConceptScore W1487304328C117568660 @default.
- W1487304328 hasConceptScore W1487304328C119857082 @default.
- W1487304328 hasConceptScore W1487304328C126255220 @default.
- W1487304328 hasConceptScore W1487304328C127722929 @default.
- W1487304328 hasConceptScore W1487304328C149782125 @default.
- W1487304328 hasConceptScore W1487304328C162324750 @default.
- W1487304328 hasConceptScore W1487304328C182306322 @default.
- W1487304328 hasConceptScore W1487304328C195487862 @default.
- W1487304328 hasConceptScore W1487304328C199360897 @default.
- W1487304328 hasConceptScore W1487304328C2524010 @default.
- W1487304328 hasConceptScore W1487304328C2776036281 @default.
- W1487304328 hasConceptScore W1487304328C2781386248 @default.
- W1487304328 hasConceptScore W1487304328C33923547 @default.
- W1487304328 hasConceptScore W1487304328C41008148 @default.
- W1487304328 hasConceptScore W1487304328C42475967 @default.
- W1487304328 hasConceptScore W1487304328C75949130 @default.
- W1487304328 hasLocation W14873043281 @default.
- W1487304328 hasOpenAccess W1487304328 @default.
- W1487304328 hasPrimaryLocation W14873043281 @default.
- W1487304328 hasRelatedWork W1509050911 @default.
- W1487304328 hasRelatedWork W2215459180 @default.
- W1487304328 isParatext "false" @default.
- W1487304328 isRetracted "false" @default.
- W1487304328 magId "1487304328" @default.
- W1487304328 workType "dissertation" @default.