Matches in SemOpenAlex for { <https://semopenalex.org/work/W1487391603> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W1487391603 endingPage "107" @default.
- W1487391603 startingPage "106" @default.
- W1487391603 abstract "With the complete sequence of the human genome being available, systematic mapping of regions of transcription, transcription factor binding, chromatin structure and histone modification has revealed that 80% of the genome outside of the protein-coding regions performs essential biochemical functions [ENCODE, 2012]. The ‘remainder’ of the human genome contains repeat elements, such as LINEs, SINEs, alpha satellites, and low-copy repeats (LCRs), also known as segmental duplications [Ji et al., 2000; Bailey et al., 2002]. These LCRs are at least 1 kbp in size, show more than 98% homology and predispose the intervening sequences to recombination. Such recombination events produce DNA copy number variations (CNVs), e.g. deletions and duplications, and inversions, which may manifest as genomic disorders [Sharp et al., 2006a]. Such genomic disorders occur with a frequency of 0.7-1.0 per 1,000 live births, often share neurodevelopmental phenotypes and are detected by genome-wide segmental aneuploidy screening [Ji et al., 2000; Hochstenbach et al., 2009, 2011]. CNVs flanked by 2 LCRs are termed recurrent CNVs, since they occur relatively often in cohorts of patients with genomic disorders [Koolen et al., 2006; Sharp et al., 2006b; Mefford et al., 2008; Hannes et al., 2009]. However, since recurrent CNVs also occur in healthy individuals, they themselves are not necessarily pathogenic [Poot et al., 2010]. Indeed, in some patients, 2 recurrent CNVs were found such that concomitant changes in the dosage of genes in both CNVs may account for the clinical phenotype [Girirajan et al., 2010; Poot et al., 2010]. These findings may explain some of the phenotypic variability among patients with genomic disorders and prompted a 2-hit hypothesis for developmental disorders [Girirajan and Eichler, 2010; Girirajan et al., 2011; Poot et al., 2011].A special class of rearrangements is located between inverted repeats (IRs), which may render ∼12% of the genome susceptible to formation of inversions or of complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements. Fosmid paired-end sequencing has identified 224 nonredundant inversions in 8 human genomes that were not included in the human reference genome [Kidd et al., 2008]. Recently, IRs were shown to mediate (DUP-TRP/INV-DUP) rearrangements, including the MECP2 duplication syndrome (MIM 300260), Duchenne muscular dystrophy (MIM 310200), VIPR2 triplication, CHRNA7 triplication, and Pelizaeus-Merzbacher disease (MIM 312080) [Carvalho et al., 2011; Shimojima et al., 2012; Beri et al., 2013; Ishmukhametova et al., 2013; Soler-Alfonso et al., 2014]. Duplication of the X-linked proteolipid protein 1 (PLP1) gene is the major mutational cause for Pelizaeus-Merzbacher disease and explains ∼80% of the cases. This duplication occurs via a mechanism that results in a DUP-TRP/INV-DUP structure [Carvalho et al., 2011; Beck et al., 2015]. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion, a structural variation found frequently among healthy individuals. PLP1 duplications were detected in 10 patients with spastic paraplegia type 2 (MIM 312920), whereas triplications were detected in 6 patients [Beck et al., 2015]. STR markers for these duplicated/triplicated regions were monomorphic in 12 of the 13 patients tested. This indicates that in these patients a single allele was affected by intrachromosomal rearrangement events.Analysis of the breakpoint junction sequences allows us to identify the underlying mutational process, such as fork stalling and template switching, microhomology-mediated break repair (MMBIR), or a near homologous recombination event between similar Alu elements or LCRs [Hastings et al., 2009]. The nonrecurrent junctions in these patients were consistent with MMBIR [Beck et al., 2015]. This contention is supported by the observation of triplicated and quadruplicated segments, point mutations being associated with some of the breakpoint junctions, and the presence of intrachromosomal rearrangements [Carvalho et al., 2013; Beck et al., 2015]. Quadruplication and a potentially higher-order amplification of a genomic interval may have resulted from rolling-circle amplification of segments between IRs as predicted by the MMBIR model [Hastings et al., 2009]. The mechanisms for such complex genomic rearrangements have only begun to be elucidated, but the present study has contributed novel insights into this hitherto neglected type of genomic rearrangement [Hastings et al., 2009; Beck et al., 2015]. Although duplications, triplications, quadruplications, etc. do not emerge from the boiling cauldron of the witches in Shakespeare's Macbeth, there are more things in our genome than are dreamt of in our philosophy." @default.
- W1487391603 created "2016-06-24" @default.
- W1487391603 creator A5014005532 @default.
- W1487391603 date "2015-07-21" @default.
- W1487391603 modified "2023-10-14" @default.
- W1487391603 title "Double, Double Toil and Trouble" @default.
- W1487391603 cites W1970767178 @default.
- W1487391603 cites W1984105777 @default.
- W1487391603 cites W2020195175 @default.
- W1487391603 cites W2028993691 @default.
- W1487391603 cites W2032247293 @default.
- W1487391603 cites W2034979835 @default.
- W1487391603 cites W2043642517 @default.
- W1487391603 cites W2045040686 @default.
- W1487391603 cites W2056657560 @default.
- W1487391603 cites W2066899264 @default.
- W1487391603 cites W2098380802 @default.
- W1487391603 cites W2100185570 @default.
- W1487391603 cites W2109428406 @default.
- W1487391603 cites W2110793364 @default.
- W1487391603 cites W2124140696 @default.
- W1487391603 cites W2125857044 @default.
- W1487391603 cites W2127848294 @default.
- W1487391603 cites W2128831915 @default.
- W1487391603 cites W2137289649 @default.
- W1487391603 cites W2153170275 @default.
- W1487391603 cites W2158094580 @default.
- W1487391603 cites W2161409513 @default.
- W1487391603 cites W2163938152 @default.
- W1487391603 cites W2259938310 @default.
- W1487391603 doi "https://doi.org/10.1159/000437009" @default.
- W1487391603 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4698624" @default.
- W1487391603 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26733774" @default.
- W1487391603 hasPublicationYear "2015" @default.
- W1487391603 type Work @default.
- W1487391603 sameAs 1487391603 @default.
- W1487391603 citedByCount "0" @default.
- W1487391603 crossrefType "journal-article" @default.
- W1487391603 hasAuthorship W1487391603A5014005532 @default.
- W1487391603 hasBestOaLocation W14873916031 @default.
- W1487391603 hasConcept C71924100 @default.
- W1487391603 hasConceptScore W1487391603C71924100 @default.
- W1487391603 hasIssue "3" @default.
- W1487391603 hasLocation W14873916031 @default.
- W1487391603 hasLocation W14873916032 @default.
- W1487391603 hasLocation W14873916033 @default.
- W1487391603 hasLocation W14873916034 @default.
- W1487391603 hasOpenAccess W1487391603 @default.
- W1487391603 hasPrimaryLocation W14873916031 @default.
- W1487391603 hasRelatedWork W1506200166 @default.
- W1487391603 hasRelatedWork W1995515455 @default.
- W1487391603 hasRelatedWork W2039318446 @default.
- W1487391603 hasRelatedWork W2048182022 @default.
- W1487391603 hasRelatedWork W2080531066 @default.
- W1487391603 hasRelatedWork W2604872355 @default.
- W1487391603 hasRelatedWork W2748952813 @default.
- W1487391603 hasRelatedWork W2899084033 @default.
- W1487391603 hasRelatedWork W3032375762 @default.
- W1487391603 hasRelatedWork W3108674512 @default.
- W1487391603 hasVolume "6" @default.
- W1487391603 isParatext "false" @default.
- W1487391603 isRetracted "false" @default.
- W1487391603 magId "1487391603" @default.
- W1487391603 workType "article" @default.