Matches in SemOpenAlex for { <https://semopenalex.org/work/W1488266902> ?p ?o ?g. }
- W1488266902 endingPage "1250" @default.
- W1488266902 startingPage "1235" @default.
- W1488266902 abstract "Key points Blood flow to our organs is maintained within a defined range to provide an adequate supply of nutrients and remove waste products by contraction and relaxation of smooth muscle cells of resistance arteries and arterioles. The ability of these cells to contract in response to an increase in intravascular pressure, and to relax following a reduction in pressure (the ‘myogenic response’), is critical for appropriate control of blood flow, but our understanding of its mechanistic basis is incomplete. Small arteries of skeletal muscles were used to test the hypothesis that myogenic constriction involves two enzymes, Rho‐associated kinase and protein kinase C, which evoke vasoconstriction by activating the contractile protein, myosin, and by reorganizing the cytoskeleton. Knowledge of the mechanisms involved in the myogenic response contributes to understanding of how blood flow is regulated and will help to identify the molecular basis of dysfunctional control of arterial diameter in disease. Abstract The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ‐specific control of blood flow. The importance of Ca 2+ entry via voltage‐gated Ca 2+ channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC 20 ) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca 2+ sensitization via activation of the RhoA/Rho‐associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca 2+ sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)‐potentiated protein phosphatase 1 inhibitor protein (CPI‐17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI‐17 and LC 20 phosphorylation, and G‐actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC 20 phosphorylation that was blocked by H1152. No change in phospho‐CPI‐17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC 20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G‐actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our findings indicate that two mechanisms of Ca 2+ sensitization (ROK‐mediated phosphorylation of MYPT1‐T855 with augmentation of LC 20 phosphorylation, and a ROK‐ and PKC‐evoked increase in actin polymerization) contribute to force generation in the myogenic response of skeletal muscle arterioles." @default.
- W1488266902 created "2016-06-24" @default.
- W1488266902 creator A5011180484 @default.
- W1488266902 creator A5015950821 @default.
- W1488266902 creator A5018798259 @default.
- W1488266902 creator A5019642435 @default.
- W1488266902 creator A5034583499 @default.
- W1488266902 creator A5040891179 @default.
- W1488266902 creator A5044646770 @default.
- W1488266902 date "2013-01-31" @default.
- W1488266902 modified "2023-10-16" @default.
- W1488266902 title "Ca<sup>2+</sup>sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries" @default.
- W1488266902 cites W118617964 @default.
- W1488266902 cites W1505862344 @default.
- W1488266902 cites W1550564549 @default.
- W1488266902 cites W1633066636 @default.
- W1488266902 cites W1755902553 @default.
- W1488266902 cites W1762594630 @default.
- W1488266902 cites W1857294168 @default.
- W1488266902 cites W1901307347 @default.
- W1488266902 cites W1941124060 @default.
- W1488266902 cites W1966129155 @default.
- W1488266902 cites W1971405143 @default.
- W1488266902 cites W1978944312 @default.
- W1488266902 cites W1981318984 @default.
- W1488266902 cites W1984210761 @default.
- W1488266902 cites W1991032022 @default.
- W1488266902 cites W1991143019 @default.
- W1488266902 cites W1993608846 @default.
- W1488266902 cites W2003416824 @default.
- W1488266902 cites W2005940304 @default.
- W1488266902 cites W2016326896 @default.
- W1488266902 cites W2027800396 @default.
- W1488266902 cites W2029296107 @default.
- W1488266902 cites W2032295238 @default.
- W1488266902 cites W2034415547 @default.
- W1488266902 cites W2038635707 @default.
- W1488266902 cites W2043563682 @default.
- W1488266902 cites W2047563063 @default.
- W1488266902 cites W2079934771 @default.
- W1488266902 cites W2087949595 @default.
- W1488266902 cites W2092335200 @default.
- W1488266902 cites W2092434590 @default.
- W1488266902 cites W2097921752 @default.
- W1488266902 cites W2101722224 @default.
- W1488266902 cites W2105858933 @default.
- W1488266902 cites W2107929374 @default.
- W1488266902 cites W2108537240 @default.
- W1488266902 cites W2114219473 @default.
- W1488266902 cites W2115562288 @default.
- W1488266902 cites W2119396182 @default.
- W1488266902 cites W2122873695 @default.
- W1488266902 cites W2124380794 @default.
- W1488266902 cites W2124504860 @default.
- W1488266902 cites W2125367915 @default.
- W1488266902 cites W2130806322 @default.
- W1488266902 cites W2131628746 @default.
- W1488266902 cites W2138742704 @default.
- W1488266902 cites W2140415323 @default.
- W1488266902 cites W2145525115 @default.
- W1488266902 cites W2145953966 @default.
- W1488266902 cites W2153726188 @default.
- W1488266902 cites W2155919901 @default.
- W1488266902 cites W2156600279 @default.
- W1488266902 cites W2161094344 @default.
- W1488266902 cites W2163629189 @default.
- W1488266902 cites W2163709364 @default.
- W1488266902 cites W2164525353 @default.
- W1488266902 cites W2164706673 @default.
- W1488266902 cites W2184787817 @default.
- W1488266902 cites W2208409969 @default.
- W1488266902 cites W2259495851 @default.
- W1488266902 cites W2289172208 @default.
- W1488266902 cites W2330991555 @default.
- W1488266902 cites W2412412126 @default.
- W1488266902 cites W2416186957 @default.
- W1488266902 cites W2418117958 @default.
- W1488266902 cites W5130128 @default.
- W1488266902 doi "https://doi.org/10.1113/jphysiol.2012.243576" @default.
- W1488266902 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3607868" @default.
- W1488266902 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23230233" @default.
- W1488266902 hasPublicationYear "2013" @default.
- W1488266902 type Work @default.
- W1488266902 sameAs 1488266902 @default.
- W1488266902 citedByCount "70" @default.
- W1488266902 countsByYear W14882669022012 @default.
- W1488266902 countsByYear W14882669022013 @default.
- W1488266902 countsByYear W14882669022014 @default.
- W1488266902 countsByYear W14882669022015 @default.
- W1488266902 countsByYear W14882669022016 @default.
- W1488266902 countsByYear W14882669022017 @default.
- W1488266902 countsByYear W14882669022018 @default.
- W1488266902 countsByYear W14882669022019 @default.
- W1488266902 countsByYear W14882669022020 @default.
- W1488266902 countsByYear W14882669022021 @default.
- W1488266902 countsByYear W14882669022022 @default.
- W1488266902 countsByYear W14882669022023 @default.
- W1488266902 crossrefType "journal-article" @default.