Matches in SemOpenAlex for { <https://semopenalex.org/work/W1488391239> ?p ?o ?g. }
- W1488391239 abstract "Future use of the sole-source aquifer near Fresno in the eastern San Joaquin Valley, California, will depend, in part, on how long 1,2-dibromo-3-chloropropane (DBCP), an agricultural fumigant banned from use since the late 1970's, persists at concentrations greater than the maximum contaminant level of 0.2 micrograms per liter (mg/L). Field data indicate that DBCP concentrations in ground water have decreased since the late 1970's. Laboratory experiments by earlier investigators show that DBCP transformed to 2-bromoallyl alcohol (BAA) under conditions similar to in situ conditions, with an estimated half-life ranging from 6.1 (pH 7.8, 21.1 degrees Celsius) to 141 years (pH 7.0, 15 degrees Celsius). For this current study, a detailed hydrogeologic investigation was done to assess the relative importance of chemical transformation, dispersion, and ground-water pumping and reapplication of irrigation water in affecting DBCP concentrations. Ground-water samples were collected from 20 monitoring wells installed along a 4.6-kilometer transect. DBCP concentrations in these samples ranged from less than the detection limit of 0.03 mg/L to a maximum of 6.4 mg/L. Results of chlorofluorocarbon (CFC) age dating indicate that DBCP occurs in water that ranges in age from about 2 to 41 years. The primary transformation product BAA, which was identified during previous laboratory studies, was not detected at or greater than 0.03 mg/L in any of the 20 ground-water samples. The lack of detection of BAA indicates that transformation to BAA is insignificant relative to other processes controlling DBCP concentrations. Results from this current study indicate that the in situ hydrolysis half-life for DBCP to BAA is much greater than the laboratory-determined values. Estimated initial concentrations of DBCP, calculated using CFC-estimated travel times and a half-life of 6.1 years, indicate that maximum initial concentrations are consistent with maximum measured concentrations in ground water. In contrast to initial DBCP concentrations, the estimated initial nitrate concentrations indicate that nitrate concentrations in recharge water have increased with time. A conceptual two-dimensional numerical flow and transport modeling approach was used to test hypotheses addressing dispersion, transformation rate, and in a relative sense, the effects of ground- water pumping and reapplication of irrigation water on DBCP concentrations in the aquifer. The flow and transport simulations, which represent hypothetical steady-state flow conditions in the aquifer, were used to refine the conceptual understanding of the aquifer system rather than to predict future concentrations of DBCP. Results indicate that dispersion reduces peak concentrations, but this process alone does not account for the apparent decrease in DBCP concentrations in ground water in the eastern San Joaquin Valley. Ground-water pumping and reapplication of irrigation water may affect DBCP concentrations to the extent that this process can be simulated indirectly using first-order decay. Transport simulation results indicate that the in situ 'effective' half-life of DBCP caused by processes other than dispersion and transformation to BAA could be on the order of 6 years." @default.
- W1488391239 created "2016-06-24" @default.
- W1488391239 creator A5010032994 @default.
- W1488391239 creator A5020066998 @default.
- W1488391239 creator A5060104517 @default.
- W1488391239 creator A5068638151 @default.
- W1488391239 creator A5089299134 @default.
- W1488391239 date "1999-01-01" @default.
- W1488391239 modified "2023-09-27" @default.
- W1488391239 title "Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California: Analysis of chemical data and ground-water flow and transport simulations" @default.
- W1488391239 cites W10673121 @default.
- W1488391239 cites W123371639 @default.
- W1488391239 cites W126626418 @default.
- W1488391239 cites W145669873 @default.
- W1488391239 cites W1481775120 @default.
- W1488391239 cites W1496393067 @default.
- W1488391239 cites W1510659591 @default.
- W1488391239 cites W1513082286 @default.
- W1488391239 cites W1515278249 @default.
- W1488391239 cites W1518995876 @default.
- W1488391239 cites W1540029540 @default.
- W1488391239 cites W1559803002 @default.
- W1488391239 cites W1580636600 @default.
- W1488391239 cites W1597836107 @default.
- W1488391239 cites W1604940817 @default.
- W1488391239 cites W1924198419 @default.
- W1488391239 cites W1989631697 @default.
- W1488391239 cites W1990347197 @default.
- W1488391239 cites W2016029861 @default.
- W1488391239 cites W2020555042 @default.
- W1488391239 cites W2035426325 @default.
- W1488391239 cites W2044829317 @default.
- W1488391239 cites W2048843348 @default.
- W1488391239 cites W2048925094 @default.
- W1488391239 cites W2052833070 @default.
- W1488391239 cites W2053091219 @default.
- W1488391239 cites W2064299399 @default.
- W1488391239 cites W2065463790 @default.
- W1488391239 cites W2070224454 @default.
- W1488391239 cites W2070266204 @default.
- W1488391239 cites W2072191315 @default.
- W1488391239 cites W2072369239 @default.
- W1488391239 cites W2072788339 @default.
- W1488391239 cites W2075978033 @default.
- W1488391239 cites W2083970700 @default.
- W1488391239 cites W2084840515 @default.
- W1488391239 cites W2086651486 @default.
- W1488391239 cites W2086718643 @default.
- W1488391239 cites W2089027483 @default.
- W1488391239 cites W2089882667 @default.
- W1488391239 cites W2093668377 @default.
- W1488391239 cites W2098902228 @default.
- W1488391239 cites W2122109709 @default.
- W1488391239 cites W2170597243 @default.
- W1488391239 cites W2184626684 @default.
- W1488391239 cites W2262891844 @default.
- W1488391239 cites W2266384804 @default.
- W1488391239 cites W2269369713 @default.
- W1488391239 cites W2427690173 @default.
- W1488391239 cites W2484485826 @default.
- W1488391239 cites W2500689156 @default.
- W1488391239 cites W2797177778 @default.
- W1488391239 cites W2903800271 @default.
- W1488391239 cites W596947888 @default.
- W1488391239 doi "https://doi.org/10.3133/wri994059" @default.
- W1488391239 hasPublicationYear "1999" @default.
- W1488391239 type Work @default.
- W1488391239 sameAs 1488391239 @default.
- W1488391239 citedByCount "4" @default.
- W1488391239 crossrefType "report" @default.
- W1488391239 hasAuthorship W1488391239A5010032994 @default.
- W1488391239 hasAuthorship W1488391239A5020066998 @default.
- W1488391239 hasAuthorship W1488391239A5060104517 @default.
- W1488391239 hasAuthorship W1488391239A5068638151 @default.
- W1488391239 hasAuthorship W1488391239A5089299134 @default.
- W1488391239 hasBestOaLocation W14883912392 @default.
- W1488391239 hasConcept C107872376 @default.
- W1488391239 hasConcept C118416809 @default.
- W1488391239 hasConcept C127313418 @default.
- W1488391239 hasConcept C159390177 @default.
- W1488391239 hasConcept C174030287 @default.
- W1488391239 hasConcept C185592680 @default.
- W1488391239 hasConcept C187320778 @default.
- W1488391239 hasConcept C33556824 @default.
- W1488391239 hasConcept C39432304 @default.
- W1488391239 hasConcept C75622301 @default.
- W1488391239 hasConcept C76177295 @default.
- W1488391239 hasConcept C76886044 @default.
- W1488391239 hasConceptScore W1488391239C107872376 @default.
- W1488391239 hasConceptScore W1488391239C118416809 @default.
- W1488391239 hasConceptScore W1488391239C127313418 @default.
- W1488391239 hasConceptScore W1488391239C159390177 @default.
- W1488391239 hasConceptScore W1488391239C174030287 @default.
- W1488391239 hasConceptScore W1488391239C185592680 @default.
- W1488391239 hasConceptScore W1488391239C187320778 @default.
- W1488391239 hasConceptScore W1488391239C33556824 @default.
- W1488391239 hasConceptScore W1488391239C39432304 @default.
- W1488391239 hasConceptScore W1488391239C75622301 @default.
- W1488391239 hasConceptScore W1488391239C76177295 @default.
- W1488391239 hasConceptScore W1488391239C76886044 @default.