Matches in SemOpenAlex for { <https://semopenalex.org/work/W1488407762> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W1488407762 abstract "Tool condition monitoring is in major focus nowadays in order to reduce production downtime due to breakdown maintenance, as timely detection of tool wear reduces the production cost. The paper provides an approach to monitor tool health for a CNC turning process using airborne acoustic emission and a PSO (Particle Swarm Optimization) optimized back-propagation neural network. Acoustic signals for good, average, and worn-out tools are recorded through a microphone. Back-propagation neural network are then trained and optimized using PSO algorithm to classify the tool health. PSO-optimized back-propagation neural network shows better performance for tool health classification as compared to simple back-propagation neural networks." @default.
- W1488407762 created "2016-06-24" @default.
- W1488407762 creator A5012240532 @default.
- W1488407762 creator A5039881132 @default.
- W1488407762 creator A5040607650 @default.
- W1488407762 creator A5043594257 @default.
- W1488407762 creator A5051259834 @default.
- W1488407762 creator A5080457003 @default.
- W1488407762 date "2015-06-01" @default.
- W1488407762 modified "2023-09-27" @default.
- W1488407762 title "Tool health monitoring using airborne acoustic emission and a PSO-optimized neural network" @default.
- W1488407762 cites W1628481780 @default.
- W1488407762 cites W1967269450 @default.
- W1488407762 cites W2003947476 @default.
- W1488407762 cites W2025031481 @default.
- W1488407762 cites W2050546928 @default.
- W1488407762 cites W2093885876 @default.
- W1488407762 cites W2117720586 @default.
- W1488407762 cites W2542691202 @default.
- W1488407762 doi "https://doi.org/10.1109/cybconf.2015.7175945" @default.
- W1488407762 hasPublicationYear "2015" @default.
- W1488407762 type Work @default.
- W1488407762 sameAs 1488407762 @default.
- W1488407762 citedByCount "3" @default.
- W1488407762 countsByYear W14884077622016 @default.
- W1488407762 countsByYear W14884077622019 @default.
- W1488407762 countsByYear W14884077622022 @default.
- W1488407762 crossrefType "proceedings-article" @default.
- W1488407762 hasAuthorship W1488407762A5012240532 @default.
- W1488407762 hasAuthorship W1488407762A5039881132 @default.
- W1488407762 hasAuthorship W1488407762A5040607650 @default.
- W1488407762 hasAuthorship W1488407762A5043594257 @default.
- W1488407762 hasAuthorship W1488407762A5051259834 @default.
- W1488407762 hasAuthorship W1488407762A5080457003 @default.
- W1488407762 hasConcept C121332964 @default.
- W1488407762 hasConcept C154945302 @default.
- W1488407762 hasConcept C174598085 @default.
- W1488407762 hasConcept C24890656 @default.
- W1488407762 hasConcept C41008148 @default.
- W1488407762 hasConcept C50644808 @default.
- W1488407762 hasConceptScore W1488407762C121332964 @default.
- W1488407762 hasConceptScore W1488407762C154945302 @default.
- W1488407762 hasConceptScore W1488407762C174598085 @default.
- W1488407762 hasConceptScore W1488407762C24890656 @default.
- W1488407762 hasConceptScore W1488407762C41008148 @default.
- W1488407762 hasConceptScore W1488407762C50644808 @default.
- W1488407762 hasLocation W14884077621 @default.
- W1488407762 hasOpenAccess W1488407762 @default.
- W1488407762 hasPrimaryLocation W14884077621 @default.
- W1488407762 hasRelatedWork W2008768416 @default.
- W1488407762 hasRelatedWork W2029982844 @default.
- W1488407762 hasRelatedWork W2056463181 @default.
- W1488407762 hasRelatedWork W2351507227 @default.
- W1488407762 hasRelatedWork W2377751577 @default.
- W1488407762 hasRelatedWork W2386387936 @default.
- W1488407762 hasRelatedWork W2392996891 @default.
- W1488407762 hasRelatedWork W3119238362 @default.
- W1488407762 hasRelatedWork W4254532548 @default.
- W1488407762 hasRelatedWork W811391773 @default.
- W1488407762 isParatext "false" @default.
- W1488407762 isRetracted "false" @default.
- W1488407762 magId "1488407762" @default.
- W1488407762 workType "article" @default.