Matches in SemOpenAlex for { <https://semopenalex.org/work/W1488473802> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1488473802 abstract "The principle significance of an artificial neural network is that it learns and improves through that learning. The definition of the learning process in neural networks is of great importance. The neural network is stimulated and regarding to these stimulations the free parameters of the network change in its internal structure. As a result the neural network replies in a new way. Based on a basic learning algorithm namely Hebbian learning, a solution to the problem of resolving uncertainty areas in diffusion tensor magnetic resonance image (DTMRI) analysis is represented. Diffusion tensor imaging (DTI) is a developing and promising medical imaging modality allowing the determination of in-vivo tissue properties noninvasively upon the random movement of the water molecules. The method is unique in its ability being a noninvasive modality which is a great opportunity to explore various white matter pathologies and healthy brain mapping for neuroanatomy research. In neuroscience applications DTI is mostly used addressing brain’s fiber tractography, reconstructing the connectivity map. Clinical evaluation of fiber tracking results is a major problem in the field. Noise, partial volume effects, inefficiency of numerical implementations by reconstructing the intersecting tracts are some of the reasons for the need of standardized fiber tract atlas. Also misregistration caused by eddy currents, ghosting due to motion artifacts, and signal loss due to susceptibility variations may all affect the calculated tractography results. The proposed method based on the Hebbian learning provides an instance of nonsupervised and competitive learning in a neurobiological aspect as a solution to the tracking problem of the intersecting axonal structures. The main contribution of the study is to describe a tracking approach via a special class of artificial neural networks namely the Hebbian learning with improved reliability." @default.
- W1488473802 created "2016-06-24" @default.
- W1488473802 creator A5062730250 @default.
- W1488473802 date "2010-02-01" @default.
- W1488473802 modified "2023-10-18" @default.
- W1488473802 title "A Hebbian Learning Approach for Diffusion Tensor Analysis and Tractography" @default.
- W1488473802 cites W1493775511 @default.
- W1488473802 cites W1567393896 @default.
- W1488473802 cites W1964802316 @default.
- W1488473802 cites W1973236375 @default.
- W1488473802 cites W2007049689 @default.
- W1488473802 cites W2041545311 @default.
- W1488473802 cites W2069860803 @default.
- W1488473802 cites W2070910636 @default.
- W1488473802 cites W2080198834 @default.
- W1488473802 cites W2084559690 @default.
- W1488473802 cites W2085757041 @default.
- W1488473802 cites W2098123918 @default.
- W1488473802 cites W2115498290 @default.
- W1488473802 cites W2115557151 @default.
- W1488473802 cites W2115582941 @default.
- W1488473802 cites W2120140176 @default.
- W1488473802 cites W2123176564 @default.
- W1488473802 cites W2123220620 @default.
- W1488473802 cites W2124776405 @default.
- W1488473802 cites W2127873018 @default.
- W1488473802 cites W2137216139 @default.
- W1488473802 cites W2142900310 @default.
- W1488473802 cites W2158402095 @default.
- W1488473802 cites W2166496643 @default.
- W1488473802 cites W2171446004 @default.
- W1488473802 doi "https://doi.org/10.5772/9379" @default.
- W1488473802 hasPublicationYear "2010" @default.
- W1488473802 type Work @default.
- W1488473802 sameAs 1488473802 @default.
- W1488473802 citedByCount "1" @default.
- W1488473802 countsByYear W14884738022022 @default.
- W1488473802 crossrefType "book-chapter" @default.
- W1488473802 hasAuthorship W1488473802A5062730250 @default.
- W1488473802 hasBestOaLocation W14884738021 @default.
- W1488473802 hasConcept C111437709 @default.
- W1488473802 hasConcept C126838900 @default.
- W1488473802 hasConcept C143409427 @default.
- W1488473802 hasConcept C149550507 @default.
- W1488473802 hasConcept C154945302 @default.
- W1488473802 hasConcept C15744967 @default.
- W1488473802 hasConcept C169760540 @default.
- W1488473802 hasConcept C41008148 @default.
- W1488473802 hasConcept C50644808 @default.
- W1488473802 hasConcept C71924100 @default.
- W1488473802 hasConcept C84787856 @default.
- W1488473802 hasConceptScore W1488473802C111437709 @default.
- W1488473802 hasConceptScore W1488473802C126838900 @default.
- W1488473802 hasConceptScore W1488473802C143409427 @default.
- W1488473802 hasConceptScore W1488473802C149550507 @default.
- W1488473802 hasConceptScore W1488473802C154945302 @default.
- W1488473802 hasConceptScore W1488473802C15744967 @default.
- W1488473802 hasConceptScore W1488473802C169760540 @default.
- W1488473802 hasConceptScore W1488473802C41008148 @default.
- W1488473802 hasConceptScore W1488473802C50644808 @default.
- W1488473802 hasConceptScore W1488473802C71924100 @default.
- W1488473802 hasConceptScore W1488473802C84787856 @default.
- W1488473802 hasLocation W14884738021 @default.
- W1488473802 hasLocation W14884738022 @default.
- W1488473802 hasOpenAccess W1488473802 @default.
- W1488473802 hasPrimaryLocation W14884738021 @default.
- W1488473802 hasRelatedWork W1488473802 @default.
- W1488473802 hasRelatedWork W1698039310 @default.
- W1488473802 hasRelatedWork W2063701798 @default.
- W1488473802 hasRelatedWork W2483278632 @default.
- W1488473802 hasRelatedWork W2488984732 @default.
- W1488473802 hasRelatedWork W2559774885 @default.
- W1488473802 hasRelatedWork W2625463462 @default.
- W1488473802 hasRelatedWork W2748952813 @default.
- W1488473802 hasRelatedWork W2899084033 @default.
- W1488473802 hasRelatedWork W2943948604 @default.
- W1488473802 isParatext "false" @default.
- W1488473802 isRetracted "false" @default.
- W1488473802 magId "1488473802" @default.
- W1488473802 workType "book-chapter" @default.