Matches in SemOpenAlex for { <https://semopenalex.org/work/W1488666543> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W1488666543 abstract "The strength of time series modeling is generally not used in almost all current intrusion detection and prevention systems. By having time series models, system administrators will be able to better plan resource allocation and system readiness to defend against malicious activities. In this paper, we address the knowledge gap by investigating the possible inclusion of a statistical based time series modeling that can be seamlessly integrated into existing cyber defense system. Cyber-attack processes exhibit long range dependence and in order to investigate such properties a new class of Generalized Autoregressive Moving Average (GARMA) can be used. In this paper, GARMA (1,2; δ,1) model is fitted to cyber-attack data sets. Three different estimation methods are used to estimate the parameters. The Hannan-Rissanen Algorithm, Whittle Estimation Method and Maximum Likelihood Estimation methods are used to estimate the parameters of the GARMA (1,2;δ,1). Point forecasts to predict the attack rate possibly hours ahead of time also has been done and the performance of the models and estimation methods are discussed. The investigation of the case-study will confirm that by exploiting the statistical properties, it is possible to predict cyber-attacks (at least in terms of attack rate) with good accuracy. This kind of forecasting capability would provide sufficient early-warning time for defenders to adjust their defense configurations or resource allocations." @default.
- W1488666543 created "2016-06-24" @default.
- W1488666543 creator A5011908153 @default.
- W1488666543 creator A5016806852 @default.
- W1488666543 creator A5042593338 @default.
- W1488666543 creator A5071123713 @default.
- W1488666543 date "2015-02-01" @default.
- W1488666543 modified "2023-10-16" @default.
- W1488666543 title "Predictive modeling for intrusions in communication systems using GARMA and ARMA models" @default.
- W1488666543 cites W1497828419 @default.
- W1488666543 cites W2042477129 @default.
- W1488666543 cites W2137567166 @default.
- W1488666543 cites W2139431384 @default.
- W1488666543 cites W2141078707 @default.
- W1488666543 cites W2166844261 @default.
- W1488666543 cites W4292963524 @default.
- W1488666543 doi "https://doi.org/10.1109/nsitnsw.2015.7176399" @default.
- W1488666543 hasPublicationYear "2015" @default.
- W1488666543 type Work @default.
- W1488666543 sameAs 1488666543 @default.
- W1488666543 citedByCount "9" @default.
- W1488666543 countsByYear W14886665432016 @default.
- W1488666543 countsByYear W14886665432017 @default.
- W1488666543 countsByYear W14886665432019 @default.
- W1488666543 countsByYear W14886665432022 @default.
- W1488666543 countsByYear W14886665432023 @default.
- W1488666543 crossrefType "proceedings-article" @default.
- W1488666543 hasAuthorship W1488666543A5011908153 @default.
- W1488666543 hasAuthorship W1488666543A5016806852 @default.
- W1488666543 hasAuthorship W1488666543A5042593338 @default.
- W1488666543 hasAuthorship W1488666543A5071123713 @default.
- W1488666543 hasConcept C119857082 @default.
- W1488666543 hasConcept C124101348 @default.
- W1488666543 hasConcept C127413603 @default.
- W1488666543 hasConcept C143724316 @default.
- W1488666543 hasConcept C146978453 @default.
- W1488666543 hasConcept C149782125 @default.
- W1488666543 hasConcept C151406439 @default.
- W1488666543 hasConcept C151730666 @default.
- W1488666543 hasConcept C159877910 @default.
- W1488666543 hasConcept C201307755 @default.
- W1488666543 hasConcept C201995342 @default.
- W1488666543 hasConcept C204323151 @default.
- W1488666543 hasConcept C33923547 @default.
- W1488666543 hasConcept C35525427 @default.
- W1488666543 hasConcept C38652104 @default.
- W1488666543 hasConcept C41008148 @default.
- W1488666543 hasConcept C74883015 @default.
- W1488666543 hasConcept C86803240 @default.
- W1488666543 hasConcept C96250715 @default.
- W1488666543 hasConceptScore W1488666543C119857082 @default.
- W1488666543 hasConceptScore W1488666543C124101348 @default.
- W1488666543 hasConceptScore W1488666543C127413603 @default.
- W1488666543 hasConceptScore W1488666543C143724316 @default.
- W1488666543 hasConceptScore W1488666543C146978453 @default.
- W1488666543 hasConceptScore W1488666543C149782125 @default.
- W1488666543 hasConceptScore W1488666543C151406439 @default.
- W1488666543 hasConceptScore W1488666543C151730666 @default.
- W1488666543 hasConceptScore W1488666543C159877910 @default.
- W1488666543 hasConceptScore W1488666543C201307755 @default.
- W1488666543 hasConceptScore W1488666543C201995342 @default.
- W1488666543 hasConceptScore W1488666543C204323151 @default.
- W1488666543 hasConceptScore W1488666543C33923547 @default.
- W1488666543 hasConceptScore W1488666543C35525427 @default.
- W1488666543 hasConceptScore W1488666543C38652104 @default.
- W1488666543 hasConceptScore W1488666543C41008148 @default.
- W1488666543 hasConceptScore W1488666543C74883015 @default.
- W1488666543 hasConceptScore W1488666543C86803240 @default.
- W1488666543 hasConceptScore W1488666543C96250715 @default.
- W1488666543 hasLocation W14886665431 @default.
- W1488666543 hasOpenAccess W1488666543 @default.
- W1488666543 hasPrimaryLocation W14886665431 @default.
- W1488666543 hasRelatedWork W2015900095 @default.
- W1488666543 hasRelatedWork W2061824698 @default.
- W1488666543 hasRelatedWork W2085582903 @default.
- W1488666543 hasRelatedWork W2278447965 @default.
- W1488666543 hasRelatedWork W2913429625 @default.
- W1488666543 hasRelatedWork W4235728994 @default.
- W1488666543 hasRelatedWork W4250518929 @default.
- W1488666543 hasRelatedWork W8098291 @default.
- W1488666543 hasRelatedWork W81705085 @default.
- W1488666543 hasRelatedWork W2185837235 @default.
- W1488666543 isParatext "false" @default.
- W1488666543 isRetracted "false" @default.
- W1488666543 magId "1488666543" @default.
- W1488666543 workType "article" @default.