Matches in SemOpenAlex for { <https://semopenalex.org/work/W1488971033> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1488971033 abstract "Predictive control is a model-based strategy used to calculate the optimal control action, by solving an optimization problem at each sampling interval, in order to maintain the output of the controlled plant close to the desired reference. Model predictive control (MPC) based on linear models is an advanced control technique with many applications in the process industry (Rossiter, 2003). The next natural step is to extend the MPC concept to work with nonlinear models. The use of controllers that take into account the nonlinearities of the plant implies an improvement in the performance of the plant by reducing the impact of the disturbances and improving the tracking capabilities of the control system. In this chapter, Nonlinear Model Predictive Control (NMPC) is studied as a more applicable approach for optimal control of multivariable processes. In general, a wide range of industrial processes are inherently nonlinear. For such nonlinear systems it is necessary to apply NMPC. Recently, several researchers have developed NMPC algorithms (Martinsen et al., 2004) that work with different types of nonlinear models. Some of these models use empirical data, such as artificial neural networks and fuzzy logic models. The model accuracy is very important in order to provide an efficient and adequate control action. Accurate nonlinear models based on soft computing (fuzzy and neural) techniques, are increasingly being used in model-based control (Mollov et al., 2004). On the other hand, the mathematical model type, which the modelling algorithm relies on, should be selected. State-space models are usually preferred to transfer functions, because the number of coefficients is substantially reduced, which simplifies the computation; systems instability can be handled; there is no truncation error. Multi-input multi-output (MIMO) systems are modelled easily (Camacho et al., 2004) and numerical conditioning is less important. A state-space representation of a Takagi-Sugeno type fuzzy-neural model (Ahmed et al., 2010; Petrov et al., 2008) is proposed in the Section 2. This type of models ensures easier description and direct computation of the gradient control vector during the optimization procedure. Identification procedure of the proposed model relies on a training algorithm, which is well-known in the field of artificial neural networks. Obtaining an accurate model is the first stage of the of the NMPC predictive control strategy. The second stage involves the computation of a future control actions sequence. In order to obtain the control actions, a previously defined optimization problem has to be solved. Different types of objective and optimization algorithms (Fletcher, 2000) can be used" @default.
- W1488971033 created "2016-06-24" @default.
- W1488971033 creator A5012890558 @default.
- W1488971033 creator A5014860221 @default.
- W1488971033 creator A5023205529 @default.
- W1488971033 creator A5055547109 @default.
- W1488971033 date "2011-06-24" @default.
- W1488971033 modified "2023-10-04" @default.
- W1488971033 title "Fuzzy–neural Model Predictive Control of Multivariable Processes" @default.
- W1488971033 cites W1561941139 @default.
- W1488971033 cites W1971552604 @default.
- W1488971033 cites W2019254379 @default.
- W1488971033 cites W2040537032 @default.
- W1488971033 cites W2077658674 @default.
- W1488971033 cites W2097330837 @default.
- W1488971033 cites W2101188133 @default.
- W1488971033 cites W2110181160 @default.
- W1488971033 cites W2129367301 @default.
- W1488971033 cites W2258277834 @default.
- W1488971033 cites W2345764627 @default.
- W1488971033 cites W2496014316 @default.
- W1488971033 cites W2798414776 @default.
- W1488971033 cites W326624365 @default.
- W1488971033 doi "https://doi.org/10.5772/16828" @default.
- W1488971033 hasPublicationYear "2011" @default.
- W1488971033 type Work @default.
- W1488971033 sameAs 1488971033 @default.
- W1488971033 citedByCount "2" @default.
- W1488971033 countsByYear W14889710332015 @default.
- W1488971033 countsByYear W14889710332021 @default.
- W1488971033 crossrefType "book-chapter" @default.
- W1488971033 hasAuthorship W1488971033A5012890558 @default.
- W1488971033 hasAuthorship W1488971033A5014860221 @default.
- W1488971033 hasAuthorship W1488971033A5023205529 @default.
- W1488971033 hasAuthorship W1488971033A5055547109 @default.
- W1488971033 hasBestOaLocation W14889710331 @default.
- W1488971033 hasConcept C117312493 @default.
- W1488971033 hasConcept C121332964 @default.
- W1488971033 hasConcept C127413603 @default.
- W1488971033 hasConcept C133731056 @default.
- W1488971033 hasConcept C154945302 @default.
- W1488971033 hasConcept C158622935 @default.
- W1488971033 hasConcept C172205157 @default.
- W1488971033 hasConcept C195975749 @default.
- W1488971033 hasConcept C2775924081 @default.
- W1488971033 hasConcept C41008148 @default.
- W1488971033 hasConcept C47446073 @default.
- W1488971033 hasConcept C50644808 @default.
- W1488971033 hasConcept C58166 @default.
- W1488971033 hasConcept C62520636 @default.
- W1488971033 hasConceptScore W1488971033C117312493 @default.
- W1488971033 hasConceptScore W1488971033C121332964 @default.
- W1488971033 hasConceptScore W1488971033C127413603 @default.
- W1488971033 hasConceptScore W1488971033C133731056 @default.
- W1488971033 hasConceptScore W1488971033C154945302 @default.
- W1488971033 hasConceptScore W1488971033C158622935 @default.
- W1488971033 hasConceptScore W1488971033C172205157 @default.
- W1488971033 hasConceptScore W1488971033C195975749 @default.
- W1488971033 hasConceptScore W1488971033C2775924081 @default.
- W1488971033 hasConceptScore W1488971033C41008148 @default.
- W1488971033 hasConceptScore W1488971033C47446073 @default.
- W1488971033 hasConceptScore W1488971033C50644808 @default.
- W1488971033 hasConceptScore W1488971033C58166 @default.
- W1488971033 hasConceptScore W1488971033C62520636 @default.
- W1488971033 hasLocation W14889710331 @default.
- W1488971033 hasLocation W14889710332 @default.
- W1488971033 hasOpenAccess W1488971033 @default.
- W1488971033 hasPrimaryLocation W14889710331 @default.
- W1488971033 hasRelatedWork W1502783720 @default.
- W1488971033 hasRelatedWork W1514307919 @default.
- W1488971033 hasRelatedWork W1590727661 @default.
- W1488971033 hasRelatedWork W19088548 @default.
- W1488971033 hasRelatedWork W1997765245 @default.
- W1488971033 hasRelatedWork W2014237590 @default.
- W1488971033 hasRelatedWork W2019692158 @default.
- W1488971033 hasRelatedWork W2024287539 @default.
- W1488971033 hasRelatedWork W2026967379 @default.
- W1488971033 hasRelatedWork W2051525163 @default.
- W1488971033 hasRelatedWork W2089724169 @default.
- W1488971033 hasRelatedWork W212590826 @default.
- W1488971033 hasRelatedWork W2145339970 @default.
- W1488971033 hasRelatedWork W2308194830 @default.
- W1488971033 hasRelatedWork W2419062540 @default.
- W1488971033 hasRelatedWork W2530952591 @default.
- W1488971033 hasRelatedWork W2783651432 @default.
- W1488971033 hasRelatedWork W2967513726 @default.
- W1488971033 hasRelatedWork W3125941368 @default.
- W1488971033 hasRelatedWork W68167268 @default.
- W1488971033 isParatext "false" @default.
- W1488971033 isRetracted "false" @default.
- W1488971033 magId "1488971033" @default.
- W1488971033 workType "book-chapter" @default.