Matches in SemOpenAlex for { <https://semopenalex.org/work/W1489119327> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1489119327 abstract "Yelp online reviews are invaluable source of information for users to choose where to visit or what to eat among numerous available options. But due to overwhelming number of reviews, it is almost impossible for users to go through all reviews and find the information they are looking for. To provide a business overview, one solution is to give the business a 1-5 star(s). This rating can be subjective and biased toward users personality. In this paper, we predict a business rating based on user-generated reviews texts alone. This not only provides an overview of plentiful long review texts but also cancels out subjectivity. Selecting the restaurant category from Yelp Dataset Challenge, we use a combination of three feature generation methods as well as four machine learning models to find the best prediction result. Our approach is to create bag of words from the top frequent words in all raw text reviews, or top frequent words/adjectives from results of Part-of-Speech analysis. Our results show Root Mean Square Error (RMSE) of 0.6 for the combination of Linear Regression with either of the top frequent words from raw data or top frequent adjectives after Part-of-Speech (POS)." @default.
- W1489119327 created "2016-06-24" @default.
- W1489119327 creator A5029631472 @default.
- W1489119327 creator A5048919402 @default.
- W1489119327 date "2014-01-04" @default.
- W1489119327 modified "2023-10-17" @default.
- W1489119327 title "Predicting a Business Star in Yelp from Its Reviews Text Alone" @default.
- W1489119327 cites W1562178075 @default.
- W1489119327 cites W2081375810 @default.
- W1489119327 cites W2090314594 @default.
- W1489119327 cites W2097726431 @default.
- W1489119327 cites W2115023510 @default.
- W1489119327 cites W2134150392 @default.
- W1489119327 cites W2150071643 @default.
- W1489119327 cites W2153207410 @default.
- W1489119327 cites W2166706824 @default.
- W1489119327 cites W3146306708 @default.
- W1489119327 doi "https://doi.org/10.48550/arxiv.1401.0864" @default.
- W1489119327 hasPublicationYear "2014" @default.
- W1489119327 type Work @default.
- W1489119327 sameAs 1489119327 @default.
- W1489119327 citedByCount "9" @default.
- W1489119327 countsByYear W14891193272015 @default.
- W1489119327 countsByYear W14891193272016 @default.
- W1489119327 countsByYear W14891193272017 @default.
- W1489119327 countsByYear W14891193272018 @default.
- W1489119327 countsByYear W14891193272019 @default.
- W1489119327 crossrefType "posted-content" @default.
- W1489119327 hasAuthorship W1489119327A5029631472 @default.
- W1489119327 hasAuthorship W1489119327A5048919402 @default.
- W1489119327 hasBestOaLocation W14891193271 @default.
- W1489119327 hasConcept C111472728 @default.
- W1489119327 hasConcept C132964779 @default.
- W1489119327 hasConcept C134306372 @default.
- W1489119327 hasConcept C138885662 @default.
- W1489119327 hasConcept C154945302 @default.
- W1489119327 hasConcept C199360897 @default.
- W1489119327 hasConcept C202889954 @default.
- W1489119327 hasConcept C204321447 @default.
- W1489119327 hasConcept C23123220 @default.
- W1489119327 hasConcept C2522767166 @default.
- W1489119327 hasConcept C2776401178 @default.
- W1489119327 hasConcept C2780897414 @default.
- W1489119327 hasConcept C33923547 @default.
- W1489119327 hasConcept C41008148 @default.
- W1489119327 hasConcept C41895202 @default.
- W1489119327 hasConcept C66402592 @default.
- W1489119327 hasConceptScore W1489119327C111472728 @default.
- W1489119327 hasConceptScore W1489119327C132964779 @default.
- W1489119327 hasConceptScore W1489119327C134306372 @default.
- W1489119327 hasConceptScore W1489119327C138885662 @default.
- W1489119327 hasConceptScore W1489119327C154945302 @default.
- W1489119327 hasConceptScore W1489119327C199360897 @default.
- W1489119327 hasConceptScore W1489119327C202889954 @default.
- W1489119327 hasConceptScore W1489119327C204321447 @default.
- W1489119327 hasConceptScore W1489119327C23123220 @default.
- W1489119327 hasConceptScore W1489119327C2522767166 @default.
- W1489119327 hasConceptScore W1489119327C2776401178 @default.
- W1489119327 hasConceptScore W1489119327C2780897414 @default.
- W1489119327 hasConceptScore W1489119327C33923547 @default.
- W1489119327 hasConceptScore W1489119327C41008148 @default.
- W1489119327 hasConceptScore W1489119327C41895202 @default.
- W1489119327 hasConceptScore W1489119327C66402592 @default.
- W1489119327 hasLocation W14891193271 @default.
- W1489119327 hasOpenAccess W1489119327 @default.
- W1489119327 hasPrimaryLocation W14891193271 @default.
- W1489119327 hasRelatedWork W1629406447 @default.
- W1489119327 hasRelatedWork W2096737792 @default.
- W1489119327 hasRelatedWork W2798958746 @default.
- W1489119327 hasRelatedWork W2894570593 @default.
- W1489119327 hasRelatedWork W2901590103 @default.
- W1489119327 hasRelatedWork W3105191672 @default.
- W1489119327 hasRelatedWork W3107474891 @default.
- W1489119327 hasRelatedWork W3111680194 @default.
- W1489119327 hasRelatedWork W82235850 @default.
- W1489119327 hasRelatedWork W2179021029 @default.
- W1489119327 isParatext "false" @default.
- W1489119327 isRetracted "false" @default.
- W1489119327 magId "1489119327" @default.
- W1489119327 workType "article" @default.