Matches in SemOpenAlex for { <https://semopenalex.org/work/W1489128807> ?p ?o ?g. }
- W1489128807 endingPage "222" @default.
- W1489128807 startingPage "191" @default.
- W1489128807 abstract "In this chapter, the authors review bioinformatics applications of two emerging graphical models, the Markov random field (MRF) and the conditional random field (CRF). The main advantage of these two methods is that they can represent dependencies of variables using graphs. Since many biological data can be described as graphs, both methods have gained increasing attention in the bioinformatics community. They first briefly describe the MRF and the CRF in comparison with the hidden Markov model (HMM). What follows are applications of the two graphical models, focusing on gene prediction, protein function prediction, and protein structure prediction. These applications benefit from the graphical models by being able to represent dependencies between graph nodes, which contributed to improvement of prediction accuracy. They discuss some applications of the MRF and CRF on gene prediction, protein function prediction, and protein structure prediction." @default.
- W1489128807 created "2016-06-24" @default.
- W1489128807 creator A5009271294 @default.
- W1489128807 creator A5027740199 @default.
- W1489128807 creator A5039498203 @default.
- W1489128807 creator A5043219672 @default.
- W1489128807 creator A5052043994 @default.
- W1489128807 creator A5062293219 @default.
- W1489128807 creator A5088774767 @default.
- W1489128807 date "2013-12-16" @default.
- W1489128807 modified "2023-10-18" @default.
- W1489128807 title "Graphical Models for Protein Function and Structure Prediction" @default.
- W1489128807 cites W14024944 @default.
- W1489128807 cites W1483099488 @default.
- W1489128807 cites W1510161841 @default.
- W1489128807 cites W1526754730 @default.
- W1489128807 cites W1527927437 @default.
- W1489128807 cites W1578951231 @default.
- W1489128807 cites W1746680969 @default.
- W1489128807 cites W1817561967 @default.
- W1489128807 cites W1971288000 @default.
- W1489128807 cites W1977896564 @default.
- W1489128807 cites W1978098535 @default.
- W1489128807 cites W1999378860 @default.
- W1489128807 cites W2000191287 @default.
- W1489128807 cites W2011986160 @default.
- W1489128807 cites W2015292449 @default.
- W1489128807 cites W2025335866 @default.
- W1489128807 cites W2026648849 @default.
- W1489128807 cites W2026918446 @default.
- W1489128807 cites W2034164729 @default.
- W1489128807 cites W2055043387 @default.
- W1489128807 cites W2062327179 @default.
- W1489128807 cites W2073895233 @default.
- W1489128807 cites W2074231493 @default.
- W1489128807 cites W2086240273 @default.
- W1489128807 cites W2087064593 @default.
- W1489128807 cites W2089035513 @default.
- W1489128807 cites W2097282516 @default.
- W1489128807 cites W2098740506 @default.
- W1489128807 cites W2105801262 @default.
- W1489128807 cites W2106706098 @default.
- W1489128807 cites W2107441346 @default.
- W1489128807 cites W2107788573 @default.
- W1489128807 cites W2108256858 @default.
- W1489128807 cites W2110400988 @default.
- W1489128807 cites W2111209586 @default.
- W1489128807 cites W2117625122 @default.
- W1489128807 cites W2118503756 @default.
- W1489128807 cites W2119387367 @default.
- W1489128807 cites W2122992512 @default.
- W1489128807 cites W2125614842 @default.
- W1489128807 cites W2125838338 @default.
- W1489128807 cites W2126159149 @default.
- W1489128807 cites W2131456688 @default.
- W1489128807 cites W2131801377 @default.
- W1489128807 cites W2137219016 @default.
- W1489128807 cites W2139585463 @default.
- W1489128807 cites W2143908786 @default.
- W1489128807 cites W2144563318 @default.
- W1489128807 cites W2152326664 @default.
- W1489128807 cites W2152770371 @default.
- W1489128807 cites W2153187042 @default.
- W1489128807 cites W2156976607 @default.
- W1489128807 cites W2158714788 @default.
- W1489128807 cites W2159833474 @default.
- W1489128807 cites W2166468869 @default.
- W1489128807 cites W2497333220 @default.
- W1489128807 cites W2915108429 @default.
- W1489128807 cites W3047916294 @default.
- W1489128807 cites W3199143553 @default.
- W1489128807 cites W4206192903 @default.
- W1489128807 cites W4212863985 @default.
- W1489128807 cites W4236956086 @default.
- W1489128807 cites W4245668478 @default.
- W1489128807 doi "https://doi.org/10.1002/9781118617151.ch09" @default.
- W1489128807 hasPublicationYear "2013" @default.
- W1489128807 type Work @default.
- W1489128807 sameAs 1489128807 @default.
- W1489128807 citedByCount "3" @default.
- W1489128807 countsByYear W14891288072017 @default.
- W1489128807 countsByYear W14891288072018 @default.
- W1489128807 countsByYear W14891288072021 @default.
- W1489128807 crossrefType "other" @default.
- W1489128807 hasAuthorship W1489128807A5009271294 @default.
- W1489128807 hasAuthorship W1489128807A5027740199 @default.
- W1489128807 hasAuthorship W1489128807A5039498203 @default.
- W1489128807 hasAuthorship W1489128807A5043219672 @default.
- W1489128807 hasAuthorship W1489128807A5052043994 @default.
- W1489128807 hasAuthorship W1489128807A5062293219 @default.
- W1489128807 hasAuthorship W1489128807A5088774767 @default.
- W1489128807 hasConcept C104317684 @default.
- W1489128807 hasConcept C119857082 @default.
- W1489128807 hasConcept C124101348 @default.
- W1489128807 hasConcept C124504099 @default.
- W1489128807 hasConcept C132525143 @default.
- W1489128807 hasConcept C152565575 @default.
- W1489128807 hasConcept C154945302 @default.