Matches in SemOpenAlex for { <https://semopenalex.org/work/W1489335941> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W1489335941 abstract "Building text planning resources by hand is timeconsuming and difficult. Certainly, a number of planning architectures and their accompanying plan libraries have been implemented, but while the architectures themselves may be reused in a new domain, the library of plans typically cannot. One way to address this problem is to use machine learning techniques to automate the derivation of planning resources for new domains. In this paper, we apply this technique to build microplanning rules for preventative expressions in instructional text. 1 I n t r o d u c t i o n Building text planning resources by hand is timeconsuming and difficult. Certainly, much work has been done in this regard; there are a number of freely available text planning architectures (e.g., Moore and Paris, 1993). It is frequently the case, however, that while the architecture itself can be reused in a new domain, the library of text plans developed for it cannot. In particular, micro-planning rules, those rules that specify the low-level grammatical details of expression, are highly sensitive to variations between sublanguages, and are therefore difficult to reuse. When faced with a new domain in which to generate text, the typical scenario is to perform a * This work is partially supported by the Engineering and Physical Sciences Research Council (EPSRC) Grant J19221, by BC/DAA9 ARC Project 293, and by the Commission of the European Union Grant LRE-62009. t After September 1, Dr. Vander Linden's address will be Department of Mathematics and Computer Science, Calvin College, Grand Rapids, MI 49546, USA. corpus analysis on a representative collection of the text produced by human authors in that domain and to induce a set of micro-planning rules guiding the generation process in accordance with the results. Some fairly simple rules usually jump out of the analysis quickly, mostly based on the analyst's intuitions. For example, in written instructions, user actions are typically expressed as imperatives. Such observations, however, tend to be gross characterisations. More accurate microplanning requires painstaking analysis. In this paper, for example, the micro-planner must distinguish between phrasing such as Don't do action,V' and Take care not to do action-X. Without analysis, it is far from clear how this decision can best be made. Some form of automation would clearly be desirable. Unfortunately, corpus analysis techniques are not yet capable of automating the initial phases of the corpus study (nor will they be for the foreseeable future). There are, however, techniques for rule induction which are useful for the later stages of corpus analysis and for implementation. In this paper, we focus on the use of such rule induction techniques in the context of the microplanning of preventative expressions in instructional text. We define what we mean by a preventative expression, and go on to describe a corpus analysis in which we derive three features that predict the grammatical form of such expressions. We then use the C4.5 learning algorithm to construct a micro-planning sub-network appropriate for these expressions. We conclude with an implemented example in which the technical author is allowed to set the relevant features, and the system generates the appropriate expressions in English and in French." @default.
- W1489335941 created "2016-06-24" @default.
- W1489335941 creator A5006341087 @default.
- W1489335941 creator A5055258367 @default.
- W1489335941 date "1996-07-01" @default.
- W1489335941 modified "2023-09-23" @default.
- W1489335941 title "Learning Micro-Planning Rules for Preventive Expressions" @default.
- W1489335941 cites W1507377794 @default.
- W1489335941 cites W1536975410 @default.
- W1489335941 cites W156747965 @default.
- W1489335941 cites W1733954365 @default.
- W1489335941 cites W1772017759 @default.
- W1489335941 cites W2002664886 @default.
- W1489335941 cites W2021281677 @default.
- W1489335941 cites W2052154979 @default.
- W1489335941 cites W2125055259 @default.
- W1489335941 cites W2153804780 @default.
- W1489335941 cites W2167152874 @default.
- W1489335941 hasPublicationYear "1996" @default.
- W1489335941 type Work @default.
- W1489335941 sameAs 1489335941 @default.
- W1489335941 citedByCount "10" @default.
- W1489335941 crossrefType "proceedings-article" @default.
- W1489335941 hasAuthorship W1489335941A5006341087 @default.
- W1489335941 hasAuthorship W1489335941A5055258367 @default.
- W1489335941 hasConcept C115903868 @default.
- W1489335941 hasConcept C123657996 @default.
- W1489335941 hasConcept C127413603 @default.
- W1489335941 hasConcept C134306372 @default.
- W1489335941 hasConcept C142362112 @default.
- W1489335941 hasConcept C153349607 @default.
- W1489335941 hasConcept C154945302 @default.
- W1489335941 hasConcept C166957645 @default.
- W1489335941 hasConcept C18762648 @default.
- W1489335941 hasConcept C206588197 @default.
- W1489335941 hasConcept C2776505523 @default.
- W1489335941 hasConcept C33923547 @default.
- W1489335941 hasConcept C36503486 @default.
- W1489335941 hasConcept C41008148 @default.
- W1489335941 hasConcept C548081761 @default.
- W1489335941 hasConcept C78519656 @default.
- W1489335941 hasConcept C95457728 @default.
- W1489335941 hasConceptScore W1489335941C115903868 @default.
- W1489335941 hasConceptScore W1489335941C123657996 @default.
- W1489335941 hasConceptScore W1489335941C127413603 @default.
- W1489335941 hasConceptScore W1489335941C134306372 @default.
- W1489335941 hasConceptScore W1489335941C142362112 @default.
- W1489335941 hasConceptScore W1489335941C153349607 @default.
- W1489335941 hasConceptScore W1489335941C154945302 @default.
- W1489335941 hasConceptScore W1489335941C166957645 @default.
- W1489335941 hasConceptScore W1489335941C18762648 @default.
- W1489335941 hasConceptScore W1489335941C206588197 @default.
- W1489335941 hasConceptScore W1489335941C2776505523 @default.
- W1489335941 hasConceptScore W1489335941C33923547 @default.
- W1489335941 hasConceptScore W1489335941C36503486 @default.
- W1489335941 hasConceptScore W1489335941C41008148 @default.
- W1489335941 hasConceptScore W1489335941C548081761 @default.
- W1489335941 hasConceptScore W1489335941C78519656 @default.
- W1489335941 hasConceptScore W1489335941C95457728 @default.
- W1489335941 hasLocation W14893359411 @default.
- W1489335941 hasOpenAccess W1489335941 @default.
- W1489335941 hasPrimaryLocation W14893359411 @default.
- W1489335941 hasRelatedWork W1544629089 @default.
- W1489335941 hasRelatedWork W1761381231 @default.
- W1489335941 hasRelatedWork W1886172393 @default.
- W1489335941 hasRelatedWork W1968088248 @default.
- W1489335941 hasRelatedWork W2125055259 @default.
- W1489335941 hasRelatedWork W2140244685 @default.
- W1489335941 hasRelatedWork W2213888577 @default.
- W1489335941 hasRelatedWork W2292412949 @default.
- W1489335941 hasRelatedWork W2310490608 @default.
- W1489335941 hasRelatedWork W2400976333 @default.
- W1489335941 hasRelatedWork W2403210192 @default.
- W1489335941 hasRelatedWork W2486336489 @default.
- W1489335941 hasRelatedWork W2914883094 @default.
- W1489335941 hasRelatedWork W2924250239 @default.
- W1489335941 hasRelatedWork W2952814424 @default.
- W1489335941 hasRelatedWork W3161451991 @default.
- W1489335941 hasRelatedWork W3204938617 @default.
- W1489335941 hasRelatedWork W64019383 @default.
- W1489335941 hasRelatedWork W1942438902 @default.
- W1489335941 hasRelatedWork W2251030572 @default.
- W1489335941 isParatext "false" @default.
- W1489335941 isRetracted "false" @default.
- W1489335941 magId "1489335941" @default.
- W1489335941 workType "article" @default.