Matches in SemOpenAlex for { <https://semopenalex.org/work/W1489402546> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1489402546 endingPage "195" @default.
- W1489402546 startingPage "186" @default.
- W1489402546 abstract "In this paper, we investigate a GA-driven fuzzy-neural networks---Fuzzy Set---based Polynomial Neural Networks (FSPNN) with information granules for the software engineering field where the dimension of dataset is high. Fuzzy Set---based Polynomial Neural Networks (FSPNN) are based on a fuzzy set-based polynomial neuron (FSPN) whose fuzzy rules include the information granules obtained through Information Granulation. The information Granules are capable of representing the specific characteristic of the system. We have developed a design methodology (genetic optimization using real number type gene Genetic Algorithms) to find the optimal structures for fuzzy-neural networks which are the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables. The augmented and genetically developed FSPNN (gFSPNN) with aids of information granules results in being structurally optimized and information granules obtained by information granulation are able to help a GA-driven FSPNN showing good approximation on the field of software engineering. The GA-based design procedure being applied at each layer of FSPNN leads to the selection of the most suitable nodes (or FSPNs) available within the FSPNN. Real number genetic algorithms are capable of reducing the solution space more than conventional genetic algorithms with binary genetype chromosomes. The performance of GA-driven FSPNN (gFSPNN) with aid of real number genetic algorithms is quantified through experimentation where we use a Boston housing data." @default.
- W1489402546 created "2016-06-24" @default.
- W1489402546 creator A5034807504 @default.
- W1489402546 creator A5035932097 @default.
- W1489402546 creator A5065446769 @default.
- W1489402546 date "2007-07-16" @default.
- W1489402546 modified "2023-09-25" @default.
- W1489402546 title "GA-Driven Fuzzy Set-Based Polynomial Neural Networks with Information Granules for Multi-variable Software Process" @default.
- W1489402546 cites W2005030534 @default.
- W1489402546 cites W2018296386 @default.
- W1489402546 cites W2019207321 @default.
- W1489402546 cites W2021392666 @default.
- W1489402546 cites W2074588395 @default.
- W1489402546 cites W2129463451 @default.
- W1489402546 cites W2153676086 @default.
- W1489402546 cites W2159265133 @default.
- W1489402546 doi "https://doi.org/10.1007/978-3-540-72393-6_24" @default.
- W1489402546 hasPublicationYear "2007" @default.
- W1489402546 type Work @default.
- W1489402546 sameAs 1489402546 @default.
- W1489402546 citedByCount "0" @default.
- W1489402546 crossrefType "book-chapter" @default.
- W1489402546 hasAuthorship W1489402546A5034807504 @default.
- W1489402546 hasAuthorship W1489402546A5035932097 @default.
- W1489402546 hasAuthorship W1489402546A5065446769 @default.
- W1489402546 hasConcept C11413529 @default.
- W1489402546 hasConcept C119857082 @default.
- W1489402546 hasConcept C124101348 @default.
- W1489402546 hasConcept C134306372 @default.
- W1489402546 hasConcept C154945302 @default.
- W1489402546 hasConcept C186108316 @default.
- W1489402546 hasConcept C195975749 @default.
- W1489402546 hasConcept C29470771 @default.
- W1489402546 hasConcept C33923547 @default.
- W1489402546 hasConcept C41008148 @default.
- W1489402546 hasConcept C50644808 @default.
- W1489402546 hasConcept C58166 @default.
- W1489402546 hasConcept C8880873 @default.
- W1489402546 hasConcept C90119067 @default.
- W1489402546 hasConceptScore W1489402546C11413529 @default.
- W1489402546 hasConceptScore W1489402546C119857082 @default.
- W1489402546 hasConceptScore W1489402546C124101348 @default.
- W1489402546 hasConceptScore W1489402546C134306372 @default.
- W1489402546 hasConceptScore W1489402546C154945302 @default.
- W1489402546 hasConceptScore W1489402546C186108316 @default.
- W1489402546 hasConceptScore W1489402546C195975749 @default.
- W1489402546 hasConceptScore W1489402546C29470771 @default.
- W1489402546 hasConceptScore W1489402546C33923547 @default.
- W1489402546 hasConceptScore W1489402546C41008148 @default.
- W1489402546 hasConceptScore W1489402546C50644808 @default.
- W1489402546 hasConceptScore W1489402546C58166 @default.
- W1489402546 hasConceptScore W1489402546C8880873 @default.
- W1489402546 hasConceptScore W1489402546C90119067 @default.
- W1489402546 hasLocation W14894025461 @default.
- W1489402546 hasOpenAccess W1489402546 @default.
- W1489402546 hasPrimaryLocation W14894025461 @default.
- W1489402546 hasRelatedWork W2037900537 @default.
- W1489402546 hasRelatedWork W2060121326 @default.
- W1489402546 hasRelatedWork W2065497562 @default.
- W1489402546 hasRelatedWork W2132193983 @default.
- W1489402546 hasRelatedWork W2142028577 @default.
- W1489402546 hasRelatedWork W2153835099 @default.
- W1489402546 hasRelatedWork W2160897682 @default.
- W1489402546 hasRelatedWork W2349966087 @default.
- W1489402546 hasRelatedWork W2383644748 @default.
- W1489402546 hasRelatedWork W3123159745 @default.
- W1489402546 isParatext "false" @default.
- W1489402546 isRetracted "false" @default.
- W1489402546 magId "1489402546" @default.
- W1489402546 workType "book-chapter" @default.