Matches in SemOpenAlex for { <https://semopenalex.org/work/W1489589986> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1489589986 abstract "Up till twenty years ago, only chemical modifications of agricultural oils for novel uses were studied. Because of the instability of various fatty acids, enzymatic biomodifications can have advantages above the chemical route. Nowadays, enzymatic catalysis can be used for the modification of oils and fats. One way of biomodification is the enzymatic esterification of glycerol with fatty acid for the synthesis of mono- and triacylglycerols. Monoesters (monoacylglycerols) are used as emulsifiers in food and in cosmetics, tailor made triesters (triacylglycerols) are used to adjust the melting range of foods and cosmetics. This thesis describes a number of membrane reactor systems for the enzymatic esterification of glycerol with decanoic acid in hexadecane as solvent. Description and modelling of the kinetics and thermodynamic equilibrium have resulted in reactor concepts to reach the objective of mono- and triester synthesis. The basic reactor studied is a two-phase immobilized enzyme membrane reactor. In the membrane reactor, lipase from Candida ragosa is immobilized at the inner fibre side of a hydrophilic hollow fibre module. Decanoic acid in n-hexadecane is circulated at the same side, meanwhile a water-glycerol phase is circulated at the shell side. The glycerol diffuses through the membrane matrix allowing the synthesis to take place at the interface. The water produced diffuses backwards. Chapter 2 describes the enzymatic esterification of decanoic acid with glycerol for an emulsion system and for a hydrophilic membrane system. In a two-phase system, the enzyme activity is related to the oil-phase volume, the interface area and the enzyme load. The rate per unit interface area of the membrane system approximates the rate measured in an emulsion system. This implies that the cellulose membrane does not affect the esterification. Another consequence is that the activity per oil-phase volume is only specific surface area related, therefore a hollow fibre device is desirable. The optimum enzyme load in the membrane system is half of that in the emulsion system. The enzyme stability in glycerol-water mixtures is described in chapter 3. The activity of lipase from Candida rugosa with time can be described with a two-step model, assuming the native lipase reversibly altering its conformation to a form having no activity. The reversibility is experimentally verified. Both, the native and inactive form do inactivate irreversible at the same time to a completely inactive form. The inactivation is a function of the glycerol concentration. The activity of immobilized enzyme is reduced to the same level of activity as is found for free lipase. Not only activity and stability of the enzymatic system are of importance, also the equilibrium ester concentrations must be known in the non-ideal two-phase system. Chapter 4 presents the program TREP (Two-phase Reaction Equilibrium Prediction). With the use of measured thermodynamic activity based equilibrium constants, mass balances and the UNIFAC group contribution method, TREP predicts the equilibrium product and substrate concentrations for given initial amounts. Equilibrium predictions show that an excess of triesters can be obtained only at low water activity conditions, in this case an one-phase system is predicted. Predictions show that pure monoesters cannot be obtained in a two-phase system of decanoic acid-hexadecane phase and a glycerol-water phase, even with a high glycerol to fatty acid ratio. This is experimentally verified. From the knowledge gathered in these chapters, two membrane reactor systems are designed, one membrane reactor for the triester production and a second membrane reactor system equipped with an in-line adsorption column for the synthesis of monoesters. Chapter 5 describes a pervaporation system in which an excess of triesters can be synthesized at low water activity conditions. Lipase is immobilized onto the lumen side of a cellulose membrane where the organic phase is present. At the shell side, air circulates and the water activity is controlled with the use of a condenser. The lipase catalyzed esterification of decanoic acid with partial glycerides is studied in this reactor. In agreement with the predictions made in chapter 4, an excess of triacylglycerols, is obtained at low water activity conditions only. A second membrane reactor concept is described in chapter 6, the organic-phase is led over an adsorption column in order to adsorb the monoglycerides onto the adsorbate. When the column is saturated with monoesters, the column can be desorbed off-line in a continuous membrane/repeated batch column process. If a 5 % ethanol in hexane solution is used as desorption solvent, monoesters are desorbed selectively leading to a 90 % purity. Finally, in chapter 7, the potentials and limitations of the enzymatic esterification are discussed. To predict the steady-state concentration of a continuous reactor, the enzyme kinetics must be described. The membrane reactor is reaction limited, this could be overcome by placing a column packed with immobilized enzyme in the organic phase recirculation loop. Not only esterification can be performed in the pervaporation system, this system could also be suitable for interesterification or transesterification. Then the program TREP should be extended for reactions with different types of fatty acids." @default.
- W1489589986 created "2016-06-24" @default.
- W1489589986 creator A5086547391 @default.
- W1489589986 date "1993-01-01" @default.
- W1489589986 modified "2023-10-02" @default.
- W1489589986 title "Enzymatic acylglycerol synthesis in membrane reactor systems" @default.
- W1489589986 cites W1548480021 @default.
- W1489589986 cites W1898428875 @default.
- W1489589986 cites W2001894264 @default.
- W1489589986 cites W2011020653 @default.
- W1489589986 cites W2131201603 @default.
- W1489589986 cites W2739616593 @default.
- W1489589986 cites W630554820 @default.
- W1489589986 hasPublicationYear "1993" @default.
- W1489589986 type Work @default.
- W1489589986 sameAs 1489589986 @default.
- W1489589986 citedByCount "0" @default.
- W1489589986 crossrefType "journal-article" @default.
- W1489589986 hasAuthorship W1489589986A5086547391 @default.
- W1489589986 hasConcept C127413603 @default.
- W1489589986 hasConcept C161790260 @default.
- W1489589986 hasConcept C178790620 @default.
- W1489589986 hasConcept C181199279 @default.
- W1489589986 hasConcept C185592680 @default.
- W1489589986 hasConcept C2776950135 @default.
- W1489589986 hasConcept C2778123984 @default.
- W1489589986 hasConcept C2779697368 @default.
- W1489589986 hasConcept C2780768339 @default.
- W1489589986 hasConcept C2780881558 @default.
- W1489589986 hasConcept C33633552 @default.
- W1489589986 hasConcept C41625074 @default.
- W1489589986 hasConcept C42360764 @default.
- W1489589986 hasConcept C43617362 @default.
- W1489589986 hasConcept C55493867 @default.
- W1489589986 hasConcept C69118441 @default.
- W1489589986 hasConcept C97488330 @default.
- W1489589986 hasConceptScore W1489589986C127413603 @default.
- W1489589986 hasConceptScore W1489589986C161790260 @default.
- W1489589986 hasConceptScore W1489589986C178790620 @default.
- W1489589986 hasConceptScore W1489589986C181199279 @default.
- W1489589986 hasConceptScore W1489589986C185592680 @default.
- W1489589986 hasConceptScore W1489589986C2776950135 @default.
- W1489589986 hasConceptScore W1489589986C2778123984 @default.
- W1489589986 hasConceptScore W1489589986C2779697368 @default.
- W1489589986 hasConceptScore W1489589986C2780768339 @default.
- W1489589986 hasConceptScore W1489589986C2780881558 @default.
- W1489589986 hasConceptScore W1489589986C33633552 @default.
- W1489589986 hasConceptScore W1489589986C41625074 @default.
- W1489589986 hasConceptScore W1489589986C42360764 @default.
- W1489589986 hasConceptScore W1489589986C43617362 @default.
- W1489589986 hasConceptScore W1489589986C55493867 @default.
- W1489589986 hasConceptScore W1489589986C69118441 @default.
- W1489589986 hasConceptScore W1489589986C97488330 @default.
- W1489589986 hasLocation W14895899861 @default.
- W1489589986 hasOpenAccess W1489589986 @default.
- W1489589986 hasPrimaryLocation W14895899861 @default.
- W1489589986 hasRelatedWork W1578303229 @default.
- W1489589986 hasRelatedWork W17042938 @default.
- W1489589986 hasRelatedWork W1982892981 @default.
- W1489589986 hasRelatedWork W1998996455 @default.
- W1489589986 hasRelatedWork W2007598998 @default.
- W1489589986 hasRelatedWork W2009658869 @default.
- W1489589986 hasRelatedWork W2013669957 @default.
- W1489589986 hasRelatedWork W2014031151 @default.
- W1489589986 hasRelatedWork W2020265959 @default.
- W1489589986 hasRelatedWork W2026807511 @default.
- W1489589986 hasRelatedWork W2033158608 @default.
- W1489589986 hasRelatedWork W2072936427 @default.
- W1489589986 hasRelatedWork W2075630488 @default.
- W1489589986 hasRelatedWork W2082173401 @default.
- W1489589986 hasRelatedWork W2088291064 @default.
- W1489589986 hasRelatedWork W2095213311 @default.
- W1489589986 hasRelatedWork W2300440326 @default.
- W1489589986 hasRelatedWork W2495878157 @default.
- W1489589986 hasRelatedWork W2836715520 @default.
- W1489589986 hasRelatedWork W2856255874 @default.
- W1489589986 isParatext "false" @default.
- W1489589986 isRetracted "false" @default.
- W1489589986 magId "1489589986" @default.
- W1489589986 workType "article" @default.