Matches in SemOpenAlex for { <https://semopenalex.org/work/W1489720487> ?p ?o ?g. }
- W1489720487 endingPage "n/a" @default.
- W1489720487 startingPage "n/a" @default.
- W1489720487 abstract "[1] Anthropogenic nitrogen (N) inputs have been found to influence emissions of greenhouse gases from a variety of ecosystems; however, the effects of N loading on greenhouse gas dynamics in lakes are not well documented. We measured concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in 26 lakes in the Colorado Rocky Mountains (USA) receiving elevated (5 – 8 kg N ha−1 yr−1) or low (<2 kg N ha−1 y−1) levels of atmospheric N deposition. The mean CO2 concentration in surface waters was 27 μmol L−1 and did not differ between deposition regions. The CH4 concentration was greater in low-deposition lakes (167 nmol L−1) compared to high-deposition lakes (48 nmol L−1), while the opposite was true for N2O. The concentration of N2O in surface water averaged 29 nmol L−1 in high-deposition lakes compared to 22 nmol L−1 in low-deposition lakes. Nitrous oxide is of particular interest because it is more potent than CO2 as a greenhouse gas and because of its role in the destruction of stratospheric ozone. To understand the potential magnitude of lake N2O production related to atmospheric N deposition, we applied two published methodologies for determining emissions from aquatic ecosystems to available data sets. We estimated contemporary global N2O emissions from lakes to be 0.04 – 2 Tg N y−1, increasing to 0.1 – 3.4 Tg N y−1 in 2050. The contemporary estimates represent 13–95% of emissions from rivers and estuaries, suggesting that further research is required to better quantify emission rates from lentic ecosystems." @default.
- W1489720487 created "2016-06-24" @default.
- W1489720487 creator A5043513297 @default.
- W1489720487 creator A5076390818 @default.
- W1489720487 date "2011-10-22" @default.
- W1489720487 modified "2023-10-06" @default.
- W1489720487 title "Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition" @default.
- W1489720487 cites W1595413178 @default.
- W1489720487 cites W1852361705 @default.
- W1489720487 cites W1882561460 @default.
- W1489720487 cites W1943002731 @default.
- W1489720487 cites W1967715021 @default.
- W1489720487 cites W1967948515 @default.
- W1489720487 cites W1970670931 @default.
- W1489720487 cites W1973532285 @default.
- W1489720487 cites W1975646827 @default.
- W1489720487 cites W1976222527 @default.
- W1489720487 cites W1979691373 @default.
- W1489720487 cites W1988208817 @default.
- W1489720487 cites W1995413311 @default.
- W1489720487 cites W1998515817 @default.
- W1489720487 cites W1999992093 @default.
- W1489720487 cites W2004549131 @default.
- W1489720487 cites W2007975373 @default.
- W1489720487 cites W2011563303 @default.
- W1489720487 cites W2016184953 @default.
- W1489720487 cites W2016743751 @default.
- W1489720487 cites W2016932298 @default.
- W1489720487 cites W2018516735 @default.
- W1489720487 cites W2020030108 @default.
- W1489720487 cites W2022446016 @default.
- W1489720487 cites W2036043107 @default.
- W1489720487 cites W2043358842 @default.
- W1489720487 cites W2047532642 @default.
- W1489720487 cites W2052561772 @default.
- W1489720487 cites W2055064514 @default.
- W1489720487 cites W2057984641 @default.
- W1489720487 cites W2058540316 @default.
- W1489720487 cites W2059391867 @default.
- W1489720487 cites W2067034894 @default.
- W1489720487 cites W2067841165 @default.
- W1489720487 cites W2074388617 @default.
- W1489720487 cites W2077975305 @default.
- W1489720487 cites W2079506117 @default.
- W1489720487 cites W2083413086 @default.
- W1489720487 cites W2086774661 @default.
- W1489720487 cites W2090074089 @default.
- W1489720487 cites W2090217546 @default.
- W1489720487 cites W2096054261 @default.
- W1489720487 cites W2108686678 @default.
- W1489720487 cites W2112492020 @default.
- W1489720487 cites W2115437960 @default.
- W1489720487 cites W2121329126 @default.
- W1489720487 cites W2125940696 @default.
- W1489720487 cites W2126444705 @default.
- W1489720487 cites W2131386567 @default.
- W1489720487 cites W2134878727 @default.
- W1489720487 cites W2138466373 @default.
- W1489720487 cites W2138900507 @default.
- W1489720487 cites W2145505730 @default.
- W1489720487 cites W2150143020 @default.
- W1489720487 cites W2153135054 @default.
- W1489720487 cites W2154610441 @default.
- W1489720487 cites W2156620406 @default.
- W1489720487 cites W2156975732 @default.
- W1489720487 cites W2164994170 @default.
- W1489720487 cites W2170385664 @default.
- W1489720487 cites W2180779804 @default.
- W1489720487 cites W221698503 @default.
- W1489720487 cites W2784955819 @default.
- W1489720487 cites W38079804 @default.
- W1489720487 cites W4235267617 @default.
- W1489720487 cites W4242531998 @default.
- W1489720487 doi "https://doi.org/10.1029/2010gb003897" @default.
- W1489720487 hasPublicationYear "2011" @default.
- W1489720487 type Work @default.
- W1489720487 sameAs 1489720487 @default.
- W1489720487 citedByCount "39" @default.
- W1489720487 countsByYear W14897204872013 @default.
- W1489720487 countsByYear W14897204872014 @default.
- W1489720487 countsByYear W14897204872015 @default.
- W1489720487 countsByYear W14897204872016 @default.
- W1489720487 countsByYear W14897204872017 @default.
- W1489720487 countsByYear W14897204872018 @default.
- W1489720487 countsByYear W14897204872019 @default.
- W1489720487 countsByYear W14897204872020 @default.
- W1489720487 countsByYear W14897204872021 @default.
- W1489720487 countsByYear W14897204872022 @default.
- W1489720487 countsByYear W14897204872023 @default.
- W1489720487 crossrefType "journal-article" @default.
- W1489720487 hasAuthorship W1489720487A5043513297 @default.
- W1489720487 hasAuthorship W1489720487A5076390818 @default.
- W1489720487 hasBestOaLocation W14897204871 @default.
- W1489720487 hasConcept C107872376 @default.
- W1489720487 hasConcept C110872660 @default.
- W1489720487 hasConcept C121332964 @default.
- W1489720487 hasConcept C127313418 @default.
- W1489720487 hasConcept C151730666 @default.