Matches in SemOpenAlex for { <https://semopenalex.org/work/W1490395035> ?p ?o ?g. }
- W1490395035 endingPage "241" @default.
- W1490395035 startingPage "227" @default.
- W1490395035 abstract "Convex optimization has found wide applications in recent years due to its unique theoretical advantages and the polynomial-time complexity of state-of-the-art solution algorithms for convex programming. This paper represents an attempt to apply second-order cone programming, a branch of convex optimization, to the class of highly nonlinear trajectory optimization problems in entry flight. The foremost challenge in applying convex optimization in most aerospace engineering problems lies in the nonlinearity and nonconvexity of the problem. Exclusive reliance on linearization does not always work well, as is the case in entry trajectory optimization. This paper focuses on how to formulate realistic, highly constrained entry trajectory optimization problems in a fashion suitable to be solved by second-order cone programming with a combination of successive linearization and relaxation techniques. Rigorous analysis is conducted to support the soundness of the approach. Numerical demonstrations are provided to..." @default.
- W1490395035 created "2016-06-24" @default.
- W1490395035 creator A5048425943 @default.
- W1490395035 creator A5055716192 @default.
- W1490395035 creator A5087466200 @default.
- W1490395035 date "2016-02-01" @default.
- W1490395035 modified "2023-10-17" @default.
- W1490395035 title "Entry Trajectory Optimization by Second-Order Cone Programming" @default.
- W1490395035 cites W1632601927 @default.
- W1490395035 cites W1965315256 @default.
- W1490395035 cites W1966185282 @default.
- W1490395035 cites W1979191765 @default.
- W1490395035 cites W1980450998 @default.
- W1490395035 cites W1982019931 @default.
- W1490395035 cites W1993687622 @default.
- W1490395035 cites W2000639728 @default.
- W1490395035 cites W2009923109 @default.
- W1490395035 cites W2021748044 @default.
- W1490395035 cites W2022419729 @default.
- W1490395035 cites W2024089509 @default.
- W1490395035 cites W2038818107 @default.
- W1490395035 cites W2052862714 @default.
- W1490395035 cites W2054414215 @default.
- W1490395035 cites W2061232002 @default.
- W1490395035 cites W2063767342 @default.
- W1490395035 cites W2076628805 @default.
- W1490395035 cites W2099454002 @default.
- W1490395035 cites W2105235982 @default.
- W1490395035 cites W2108223210 @default.
- W1490395035 cites W2117065890 @default.
- W1490395035 cites W2119080913 @default.
- W1490395035 cites W2123871098 @default.
- W1490395035 cites W2125240595 @default.
- W1490395035 cites W2140771941 @default.
- W1490395035 cites W2155455775 @default.
- W1490395035 cites W2159583056 @default.
- W1490395035 cites W2161443056 @default.
- W1490395035 cites W2329596713 @default.
- W1490395035 cites W2488496932 @default.
- W1490395035 cites W2563212582 @default.
- W1490395035 cites W4250589301 @default.
- W1490395035 doi "https://doi.org/10.2514/1.g001210" @default.
- W1490395035 hasPublicationYear "2016" @default.
- W1490395035 type Work @default.
- W1490395035 sameAs 1490395035 @default.
- W1490395035 citedByCount "189" @default.
- W1490395035 countsByYear W14903950352015 @default.
- W1490395035 countsByYear W14903950352016 @default.
- W1490395035 countsByYear W14903950352017 @default.
- W1490395035 countsByYear W14903950352018 @default.
- W1490395035 countsByYear W14903950352019 @default.
- W1490395035 countsByYear W14903950352020 @default.
- W1490395035 countsByYear W14903950352021 @default.
- W1490395035 countsByYear W14903950352022 @default.
- W1490395035 countsByYear W14903950352023 @default.
- W1490395035 crossrefType "journal-article" @default.
- W1490395035 hasAuthorship W1490395035A5048425943 @default.
- W1490395035 hasAuthorship W1490395035A5055716192 @default.
- W1490395035 hasAuthorship W1490395035A5087466200 @default.
- W1490395035 hasConcept C10138342 @default.
- W1490395035 hasConcept C111397411 @default.
- W1490395035 hasConcept C112680207 @default.
- W1490395035 hasConcept C11413529 @default.
- W1490395035 hasConcept C115527620 @default.
- W1490395035 hasConcept C121332964 @default.
- W1490395035 hasConcept C126255220 @default.
- W1490395035 hasConcept C1276947 @default.
- W1490395035 hasConcept C13662910 @default.
- W1490395035 hasConcept C154945302 @default.
- W1490395035 hasConcept C157972887 @default.
- W1490395035 hasConcept C158622935 @default.
- W1490395035 hasConcept C162324750 @default.
- W1490395035 hasConcept C173246807 @default.
- W1490395035 hasConcept C182306322 @default.
- W1490395035 hasConcept C2524010 @default.
- W1490395035 hasConcept C2775924081 @default.
- W1490395035 hasConcept C30014739 @default.
- W1490395035 hasConcept C33923547 @default.
- W1490395035 hasConcept C41008148 @default.
- W1490395035 hasConcept C47446073 @default.
- W1490395035 hasConcept C62520636 @default.
- W1490395035 hasConcept C91575142 @default.
- W1490395035 hasConceptScore W1490395035C10138342 @default.
- W1490395035 hasConceptScore W1490395035C111397411 @default.
- W1490395035 hasConceptScore W1490395035C112680207 @default.
- W1490395035 hasConceptScore W1490395035C11413529 @default.
- W1490395035 hasConceptScore W1490395035C115527620 @default.
- W1490395035 hasConceptScore W1490395035C121332964 @default.
- W1490395035 hasConceptScore W1490395035C126255220 @default.
- W1490395035 hasConceptScore W1490395035C1276947 @default.
- W1490395035 hasConceptScore W1490395035C13662910 @default.
- W1490395035 hasConceptScore W1490395035C154945302 @default.
- W1490395035 hasConceptScore W1490395035C157972887 @default.
- W1490395035 hasConceptScore W1490395035C158622935 @default.
- W1490395035 hasConceptScore W1490395035C162324750 @default.
- W1490395035 hasConceptScore W1490395035C173246807 @default.
- W1490395035 hasConceptScore W1490395035C182306322 @default.
- W1490395035 hasConceptScore W1490395035C2524010 @default.