Matches in SemOpenAlex for { <https://semopenalex.org/work/W1490505438> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1490505438 abstract "A branch of ordered algebraic structures has grown, motivated by $K$-theoretic applications and mainly concerned with partially ordered abelian groups satisfying the Riesz interpolation property. This monograph is the first source in which the algebraic and analytic aspects of these interpolation groups have been integrated into a coherent framework for general reference. The author provides a solid foundation in the structure theory of interpolation groups and dimension groups (directed unperforated interpolation groups), with applications to ordered $K$-theory particularly in mind. Although interpolation groups are defined as purely algebraic structures, their development has been strongly influenced by functional analysis. This cross-cultural development has left interpolation groups somewhat estranged from both the algebraists, who may feel intimidated by compact convex sets, and the functional analysts, who may feel handicapped by the lack of scalars. This book, requiring only standard first-year graduate courses in algebra and functional analysis, aims to make the subject accessible to readers from both disciplines. High points of the development include the following: characterization of dimension groups as direct limits of finite products of copies of the integers; the double-dual representation of an interpolation group with order-unit via affine continuous real-valued functions on its state space; the structure of dimension groups complete with respect to the order-unit norm, as well as monotone sigma-complete dimension groups and dimension groups with countably infinite interpolation; and an introduction to the problem of classifying extensions of one dimension group by another. The book also includes a development of portions of the theory of compact convex sets and Choquet simplices, and an expository discussion of various applications of interpolation group theory to rings and $C^*$-algebras via ordered $K_0$. A discussion of some open problems in interpolation groups and dimension groups concludes the book. Of interest, of course, to researchers in ordered algebraic structures, the book will also be a valuable source for researchers seeking a background in interpolation groups and dimension groups for applications to such subjects as rings, operator algebras, topological Markov chains, positive polynomials, compact group actions, or other areas where ordered Grothendieck groups might be useful. This is a reprint of the 1986 original. (SURV/20.S)" @default.
- W1490505438 created "2016-06-24" @default.
- W1490505438 creator A5082849061 @default.
- W1490505438 date "2010-03-19" @default.
- W1490505438 modified "2023-10-05" @default.
- W1490505438 title "Partially Ordered Abelian Groups with Interpolation" @default.
- W1490505438 cites W1547644141 @default.
- W1490505438 cites W1547836095 @default.
- W1490505438 cites W1965917286 @default.
- W1490505438 cites W1968702634 @default.
- W1490505438 cites W1971126401 @default.
- W1490505438 cites W2002106714 @default.
- W1490505438 cites W2312511319 @default.
- W1490505438 cites W2328285002 @default.
- W1490505438 cites W2332461021 @default.
- W1490505438 doi "https://doi.org/10.1090/surv/020" @default.
- W1490505438 hasPublicationYear "2010" @default.
- W1490505438 type Work @default.
- W1490505438 sameAs 1490505438 @default.
- W1490505438 citedByCount "179" @default.
- W1490505438 countsByYear W14905054382012 @default.
- W1490505438 countsByYear W14905054382013 @default.
- W1490505438 countsByYear W14905054382014 @default.
- W1490505438 countsByYear W14905054382015 @default.
- W1490505438 countsByYear W14905054382016 @default.
- W1490505438 countsByYear W14905054382017 @default.
- W1490505438 countsByYear W14905054382018 @default.
- W1490505438 countsByYear W14905054382019 @default.
- W1490505438 countsByYear W14905054382020 @default.
- W1490505438 countsByYear W14905054382021 @default.
- W1490505438 countsByYear W14905054382022 @default.
- W1490505438 countsByYear W14905054382023 @default.
- W1490505438 crossrefType "monograph" @default.
- W1490505438 hasAuthorship W1490505438A5082849061 @default.
- W1490505438 hasConcept C104114177 @default.
- W1490505438 hasConcept C136170076 @default.
- W1490505438 hasConcept C137800194 @default.
- W1490505438 hasConcept C154945302 @default.
- W1490505438 hasConcept C202444582 @default.
- W1490505438 hasConcept C33923547 @default.
- W1490505438 hasConcept C41008148 @default.
- W1490505438 hasConceptScore W1490505438C104114177 @default.
- W1490505438 hasConceptScore W1490505438C136170076 @default.
- W1490505438 hasConceptScore W1490505438C137800194 @default.
- W1490505438 hasConceptScore W1490505438C154945302 @default.
- W1490505438 hasConceptScore W1490505438C202444582 @default.
- W1490505438 hasConceptScore W1490505438C33923547 @default.
- W1490505438 hasConceptScore W1490505438C41008148 @default.
- W1490505438 hasLocation W14905054381 @default.
- W1490505438 hasOpenAccess W1490505438 @default.
- W1490505438 hasPrimaryLocation W14905054381 @default.
- W1490505438 hasRelatedWork W1497986648 @default.
- W1490505438 hasRelatedWork W1678370088 @default.
- W1490505438 hasRelatedWork W1821847917 @default.
- W1490505438 hasRelatedWork W2006990530 @default.
- W1490505438 hasRelatedWork W2021494526 @default.
- W1490505438 hasRelatedWork W2032361691 @default.
- W1490505438 hasRelatedWork W2149376139 @default.
- W1490505438 hasRelatedWork W3083642434 @default.
- W1490505438 hasRelatedWork W776536739 @default.
- W1490505438 hasRelatedWork W2056205479 @default.
- W1490505438 isParatext "false" @default.
- W1490505438 isRetracted "false" @default.
- W1490505438 magId "1490505438" @default.
- W1490505438 workType "book" @default.