Matches in SemOpenAlex for { <https://semopenalex.org/work/W1490570063> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1490570063 abstract "Since the pioneering work by White (1988), the application of artificial neural networks (ANNs) to finance has enjoyed an exponential growth in research and publications. The evidence accumulated over the last decade indicates that the success of the financial application of an ANN depends crucially on its design. The last few years have seen a series of financial applications of evolutionary ANNs (EANNs). Margarita (1991) applies a genetic search to the weights of a recurrent network for the trading of the FIAT shares in the Milan Stock Exchange. In Dorsey, Johnson and Mayer (1995), the GA is found to perform well when optimizing neural networks (NNs). Sexton, Johnson and Dorsey (1995) also find the GA-optimized NN to outperform the back-propagated NN (BPNN) when testing out-of-sample, thereby addressing the problem of overfitting. Harrald and Kamstra (1998) use evolutionary programming to replace the more familiar back-propagation method to fine tune the connection weights of feedforward nets for forecasting volatility. White (1998) shows that a Genetic Adaptive Neural Network (GANN) is able to approximate, to a high degree of accuracy, the complex, nonlinear option-pricing function used to produce simulated option prices. While these studies clearly evidence the promising feature of using evolutionary computation in the design of ANNs, in Yao's categorization, they are all concerned with the lowest level of evolution, namely, connection weights. Other dimensions of the design of an artificial neural net, such as the number of hidden layers, number of hidden nodes, inputs, and transfer functions have not been tackled. Therefore, the purpose of this paper is to extend the current financial applications of EANNs to a higher level of evolution and to evaluate their relevance." @default.
- W1490570063 created "2016-06-24" @default.
- W1490570063 creator A5042201649 @default.
- W1490570063 date "1999-03-01" @default.
- W1490570063 modified "2023-09-22" @default.
- W1490570063 title "Would Evolutionary Computation Help for Designs of Artificial Neural Nets in Financial Applications" @default.
- W1490570063 hasPublicationYear "1999" @default.
- W1490570063 type Work @default.
- W1490570063 sameAs 1490570063 @default.
- W1490570063 citedByCount "0" @default.
- W1490570063 crossrefType "posted-content" @default.
- W1490570063 hasAuthorship W1490570063A5042201649 @default.
- W1490570063 hasConcept C105902424 @default.
- W1490570063 hasConcept C110332635 @default.
- W1490570063 hasConcept C119857082 @default.
- W1490570063 hasConcept C154945302 @default.
- W1490570063 hasConcept C155032097 @default.
- W1490570063 hasConcept C22019652 @default.
- W1490570063 hasConcept C41008148 @default.
- W1490570063 hasConcept C47702885 @default.
- W1490570063 hasConcept C50644808 @default.
- W1490570063 hasConcept C8880873 @default.
- W1490570063 hasConceptScore W1490570063C105902424 @default.
- W1490570063 hasConceptScore W1490570063C110332635 @default.
- W1490570063 hasConceptScore W1490570063C119857082 @default.
- W1490570063 hasConceptScore W1490570063C154945302 @default.
- W1490570063 hasConceptScore W1490570063C155032097 @default.
- W1490570063 hasConceptScore W1490570063C22019652 @default.
- W1490570063 hasConceptScore W1490570063C41008148 @default.
- W1490570063 hasConceptScore W1490570063C47702885 @default.
- W1490570063 hasConceptScore W1490570063C50644808 @default.
- W1490570063 hasConceptScore W1490570063C8880873 @default.
- W1490570063 hasLocation W14905700631 @default.
- W1490570063 hasOpenAccess W1490570063 @default.
- W1490570063 hasPrimaryLocation W14905700631 @default.
- W1490570063 hasRelatedWork W1484874813 @default.
- W1490570063 hasRelatedWork W1495622954 @default.
- W1490570063 hasRelatedWork W1509829063 @default.
- W1490570063 hasRelatedWork W1513196210 @default.
- W1490570063 hasRelatedWork W1535447534 @default.
- W1490570063 hasRelatedWork W1537698300 @default.
- W1490570063 hasRelatedWork W1974864036 @default.
- W1490570063 hasRelatedWork W1976294505 @default.
- W1490570063 hasRelatedWork W2028967620 @default.
- W1490570063 hasRelatedWork W2070551276 @default.
- W1490570063 hasRelatedWork W2101465260 @default.
- W1490570063 hasRelatedWork W2110760339 @default.
- W1490570063 hasRelatedWork W2134514463 @default.
- W1490570063 hasRelatedWork W2160902880 @default.
- W1490570063 hasRelatedWork W2162503177 @default.
- W1490570063 hasRelatedWork W2168920005 @default.
- W1490570063 hasRelatedWork W2338158581 @default.
- W1490570063 hasRelatedWork W2403228913 @default.
- W1490570063 hasRelatedWork W2801617490 @default.
- W1490570063 hasRelatedWork W30978646 @default.
- W1490570063 isParatext "false" @default.
- W1490570063 isRetracted "false" @default.
- W1490570063 magId "1490570063" @default.
- W1490570063 workType "article" @default.