Matches in SemOpenAlex for { <https://semopenalex.org/work/W1490994218> ?p ?o ?g. }
- W1490994218 endingPage "314" @default.
- W1490994218 startingPage "224" @default.
- W1490994218 abstract "Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u ∈ GF(q) is that integer k, 1 ≤ k ≤ q−1, for which u = g k. The well-known problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2n). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2n) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2n) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2n) ought to be avoided in all cryptographic applications. On the other hand, the fields GF(p) with p prime appear to offer relatively high levels of security." @default.
- W1490994218 created "2016-06-24" @default.
- W1490994218 creator A5035952740 @default.
- W1490994218 date "2007-02-28" @default.
- W1490994218 modified "2023-10-03" @default.
- W1490994218 title "Discrete logarithms in finite fields and their cryptographic significance" @default.
- W1490994218 cites W1540582803 @default.
- W1490994218 cites W1586031236 @default.
- W1490994218 cites W1590338406 @default.
- W1490994218 cites W1971726509 @default.
- W1490994218 cites W1971970654 @default.
- W1490994218 cites W1972332180 @default.
- W1490994218 cites W1975820320 @default.
- W1490994218 cites W1981455414 @default.
- W1490994218 cites W1984753839 @default.
- W1490994218 cites W1991374982 @default.
- W1490994218 cites W2006952914 @default.
- W1490994218 cites W2007643787 @default.
- W1490994218 cites W2023719829 @default.
- W1490994218 cites W2039899369 @default.
- W1490994218 cites W2043710704 @default.
- W1490994218 cites W2043769211 @default.
- W1490994218 cites W2047360699 @default.
- W1490994218 cites W2055735365 @default.
- W1490994218 cites W2088091599 @default.
- W1490994218 cites W2089898547 @default.
- W1490994218 cites W2091260227 @default.
- W1490994218 cites W2103355166 @default.
- W1490994218 cites W2117366131 @default.
- W1490994218 cites W2156186849 @default.
- W1490994218 cites W2162442687 @default.
- W1490994218 cites W2165638380 @default.
- W1490994218 cites W2316564661 @default.
- W1490994218 cites W2329291360 @default.
- W1490994218 cites W2484118837 @default.
- W1490994218 cites W4213346643 @default.
- W1490994218 cites W4214814689 @default.
- W1490994218 cites W4214850390 @default.
- W1490994218 cites W4231018896 @default.
- W1490994218 cites W4231623775 @default.
- W1490994218 cites W4235389139 @default.
- W1490994218 cites W4246140522 @default.
- W1490994218 doi "https://doi.org/10.1007/3-540-39757-4_20" @default.
- W1490994218 hasPublicationYear "2007" @default.
- W1490994218 type Work @default.
- W1490994218 sameAs 1490994218 @default.
- W1490994218 citedByCount "256" @default.
- W1490994218 countsByYear W14909942182012 @default.
- W1490994218 countsByYear W14909942182013 @default.
- W1490994218 countsByYear W14909942182014 @default.
- W1490994218 countsByYear W14909942182015 @default.
- W1490994218 countsByYear W14909942182016 @default.
- W1490994218 countsByYear W14909942182017 @default.
- W1490994218 countsByYear W14909942182018 @default.
- W1490994218 countsByYear W14909942182019 @default.
- W1490994218 countsByYear W14909942182020 @default.
- W1490994218 countsByYear W14909942182021 @default.
- W1490994218 countsByYear W14909942182022 @default.
- W1490994218 countsByYear W14909942182023 @default.
- W1490994218 crossrefType "book-chapter" @default.
- W1490994218 hasAuthorship W1490994218A5035952740 @default.
- W1490994218 hasBestOaLocation W14909942181 @default.
- W1490994218 hasConcept C108277079 @default.
- W1490994218 hasConcept C113429393 @default.
- W1490994218 hasConcept C11413529 @default.
- W1490994218 hasConcept C114614502 @default.
- W1490994218 hasConcept C118615104 @default.
- W1490994218 hasConcept C134306372 @default.
- W1490994218 hasConcept C148730421 @default.
- W1490994218 hasConcept C173259116 @default.
- W1490994218 hasConcept C178489894 @default.
- W1490994218 hasConcept C184992742 @default.
- W1490994218 hasConcept C199360897 @default.
- W1490994218 hasConcept C202444582 @default.
- W1490994218 hasConcept C203062551 @default.
- W1490994218 hasConcept C33923547 @default.
- W1490994218 hasConcept C38652104 @default.
- W1490994218 hasConcept C39927690 @default.
- W1490994218 hasConcept C41008148 @default.
- W1490994218 hasConcept C6295992 @default.
- W1490994218 hasConcept C77926391 @default.
- W1490994218 hasConcept C80444323 @default.
- W1490994218 hasConcept C94375191 @default.
- W1490994218 hasConcept C9652623 @default.
- W1490994218 hasConcept C97137487 @default.
- W1490994218 hasConceptScore W1490994218C108277079 @default.
- W1490994218 hasConceptScore W1490994218C113429393 @default.
- W1490994218 hasConceptScore W1490994218C11413529 @default.
- W1490994218 hasConceptScore W1490994218C114614502 @default.
- W1490994218 hasConceptScore W1490994218C118615104 @default.
- W1490994218 hasConceptScore W1490994218C134306372 @default.
- W1490994218 hasConceptScore W1490994218C148730421 @default.
- W1490994218 hasConceptScore W1490994218C173259116 @default.
- W1490994218 hasConceptScore W1490994218C178489894 @default.
- W1490994218 hasConceptScore W1490994218C184992742 @default.
- W1490994218 hasConceptScore W1490994218C199360897 @default.
- W1490994218 hasConceptScore W1490994218C202444582 @default.
- W1490994218 hasConceptScore W1490994218C203062551 @default.