Matches in SemOpenAlex for { <https://semopenalex.org/work/W1490999666> ?p ?o ?g. }
- W1490999666 abstract "The removal of non-coding sequences, introns, is an essential part of messenger RNA processing. In most metazoan organisms, the U12-type spliceosome processes a subset of introns containing highly conserved recognition sequences. U12-type introns constitute less than 0,5% of all introns and reside preferentially in genes related to information processing functions, as opposed to genes encoding for metabolic enzymes. It has previously been shown that the excision of U12-type introns is inefficient compared to that of U2-type introns, supporting the model that these introns could provide a rate-limiting control for gene expression. In this work, cells with low abundance of the U12-type spliceosome were found to inefficiently process U12-type introns encoded by a transfected construct, but with endogenous genes, the abundance of the U12-type spliceosome was not found to affect expression levels. However, significant levels of endogenous unspliced U12-type introncontaining pre-mRNAs were detected in cells. Together these results support the idea that U12-type splicing may limit gene expression in some situations. The effect of U12-type splicing efficiency on a whole organism was studied in a Drosophila mutant deficient in U12-type splicing. Genes containing U12-type introns showed variable gene-specific responses to the splicing defect. Surprisingly, microarray screening revealed that metabolic genes were enriched among downstream effects, and that the phenotype could largely be attributed to one U12-type intron-containing mitochondrial gene. Gene expression control by the U12-type spliceosome could thus have widespread effects on metabolic functions in the organism. The subcellular localization of the U12-type spliceosome components was studied as a response to a recent dispute on the localization of the U12-type spliceosome. All components studied were found to be nuclear indicating that the processing of U12-type introns occurs within the nucleus, thus clarifying a question central to the field. Review of the literature 1 Review of the literature 1.1 Overview of eukaryotic pre-mRNA processing A eukaryotic gene typically consists of several stretches of coding sequence, exons, separated by non-coding introns (Figure 1). The discontinuous structure of eukaryotic genes presents a problem for the gene expression machinery: open reading frames separated by intronic areas must be joined together to produce a functional messenger RNA (mRNA). This process, mRNA splicing, is achieved by the spliceosome, a large complex of small nuclear RNA (snRNA) molecules assembled into small nuclear ribonucleoprotein (snRNP) particles and numerous auxiliary proteins. Intron recognition and spliceosome assembly are followed by catalytic reactions that result in the joining of exons and release of the intron. Splicing occurs primarily cotranscriptionally, and is integrated with other pre-mRNA processing events in the nucleus, such as capping and polyadenylation. Transcripts become mature mRNAs through multiple processing steps prior to transport out of the nucleus into the cytoplasm, where they can be translated, stored or degraded. 1.2 Introns in eukaryotic genes 1.2.1 Complex organisms have large variation of intron sizes In higher eukaryotes, multiple introns are present in most genes. Mammals in particular have a surprising variety of intron sizes and numbers per gene. In humans, mean intron length is 3300 bp, whereas in the fruit fly Drosophila melanogaster, the average length is less than 500 bp (Lander et al. 2001). An extreme example is provided by the longest human gene, coding for the muscle-specific protein dystrophin. It spans 2,5 million bases, but its 79 exons account less than 1% of total length, with the average intron length of 26 000 bases (Pozzoli et al. 2002). In general, simple eukaryotes have less introns than multicellular organisms, but the frequency of introns varies in different lineages (reviewed by Jeffares et al. 2006). In baker's yeast Saccharomyces cerevisiae, only 4% of genes have introns, usually only one per gene (Kupfer et al. 2004). Intron size distribution in yeast, from 50 to 1000 nt, is more narrow than in more complex organisms. 1 Figure 1. Schematic picture of main steps in pre-mRNA processing. Blue boxes, exons; thin black lines, introns; green dots, exon junction complex; thick line, nuclear membrane and pore. RNA pol II" @default.
- W1490999666 created "2016-06-24" @default.
- W1490999666 creator A5083382890 @default.
- W1490999666 date "2010-10-15" @default.
- W1490999666 modified "2023-09-26" @default.
- W1490999666 title "U12-type Spliceosome : Localization and Effects of Splicing Efficiency on Gene Expression" @default.
- W1490999666 cites W1487397714 @default.
- W1490999666 cites W1513114192 @default.
- W1490999666 cites W1532176723 @default.
- W1490999666 cites W1546107995 @default.
- W1490999666 cites W1555556483 @default.
- W1490999666 cites W1564698930 @default.
- W1490999666 cites W1568968913 @default.
- W1490999666 cites W1574133493 @default.
- W1490999666 cites W1673194361 @default.
- W1490999666 cites W1771001171 @default.
- W1490999666 cites W177901988 @default.
- W1490999666 cites W1799432831 @default.
- W1490999666 cites W1805429580 @default.
- W1490999666 cites W1850691205 @default.
- W1490999666 cites W1852181705 @default.
- W1490999666 cites W1905489680 @default.
- W1490999666 cites W1931301781 @default.
- W1490999666 cites W1931304055 @default.
- W1490999666 cites W1964803971 @default.
- W1490999666 cites W1968072881 @default.
- W1490999666 cites W1968223204 @default.
- W1490999666 cites W1968282235 @default.
- W1490999666 cites W1968569455 @default.
- W1490999666 cites W1970108031 @default.
- W1490999666 cites W1970774008 @default.
- W1490999666 cites W1972985327 @default.
- W1490999666 cites W1974434328 @default.
- W1490999666 cites W1975580175 @default.
- W1490999666 cites W1977658792 @default.
- W1490999666 cites W1979455742 @default.
- W1490999666 cites W1980424685 @default.
- W1490999666 cites W1980477780 @default.
- W1490999666 cites W1982064764 @default.
- W1490999666 cites W1982118908 @default.
- W1490999666 cites W1983509070 @default.
- W1490999666 cites W1983924599 @default.
- W1490999666 cites W1984116290 @default.
- W1490999666 cites W1985991078 @default.
- W1490999666 cites W1986113553 @default.
- W1490999666 cites W1988455121 @default.
- W1490999666 cites W1988485709 @default.
- W1490999666 cites W1988523481 @default.
- W1490999666 cites W1989835274 @default.
- W1490999666 cites W1990393476 @default.
- W1490999666 cites W1990823895 @default.
- W1490999666 cites W1990892368 @default.
- W1490999666 cites W1991210664 @default.
- W1490999666 cites W1991772727 @default.
- W1490999666 cites W1993648028 @default.
- W1490999666 cites W1994261379 @default.
- W1490999666 cites W1995324078 @default.
- W1490999666 cites W1995478437 @default.
- W1490999666 cites W1997290172 @default.
- W1490999666 cites W1997809603 @default.
- W1490999666 cites W2000161913 @default.
- W1490999666 cites W2000364429 @default.
- W1490999666 cites W2000493666 @default.
- W1490999666 cites W2001398820 @default.
- W1490999666 cites W2001509514 @default.
- W1490999666 cites W2002112358 @default.
- W1490999666 cites W2004676196 @default.
- W1490999666 cites W2004954843 @default.
- W1490999666 cites W2005100774 @default.
- W1490999666 cites W2005664674 @default.
- W1490999666 cites W2006628267 @default.
- W1490999666 cites W2007338713 @default.
- W1490999666 cites W2007995145 @default.
- W1490999666 cites W2008177307 @default.
- W1490999666 cites W2008420979 @default.
- W1490999666 cites W2008477770 @default.
- W1490999666 cites W2009103135 @default.
- W1490999666 cites W2009968618 @default.
- W1490999666 cites W2010238393 @default.
- W1490999666 cites W2010852376 @default.
- W1490999666 cites W2011405092 @default.
- W1490999666 cites W2012911917 @default.
- W1490999666 cites W2013306113 @default.
- W1490999666 cites W2016916568 @default.
- W1490999666 cites W2020240988 @default.
- W1490999666 cites W2020308159 @default.
- W1490999666 cites W2021054898 @default.
- W1490999666 cites W2021525576 @default.
- W1490999666 cites W2021735978 @default.
- W1490999666 cites W2021783076 @default.
- W1490999666 cites W2022346667 @default.
- W1490999666 cites W2023126119 @default.
- W1490999666 cites W2023648355 @default.
- W1490999666 cites W2024233959 @default.
- W1490999666 cites W2027265085 @default.
- W1490999666 cites W2028409654 @default.
- W1490999666 cites W2028845751 @default.
- W1490999666 cites W2030201014 @default.
- W1490999666 cites W2031214064 @default.
- W1490999666 cites W2031567993 @default.