Matches in SemOpenAlex for { <https://semopenalex.org/work/W1491165167> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W1491165167 abstract "Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to change behavior based on data, such as from sensor data or databases. They exist a number of authors have applied genetic algorithms (GA) to the problem of K-clustering, where the required number of clusters is known. Various algorithms are used to enable the GAs to cluster and to enhance their performance, but there is little or no comparison between the different algorithms. It is not clear which algorithms are best suited to the clustering problem, or how any adaptions will affect GA performance for differing data sets. In this article we shall compare a number of algorithms of GA appropriate for thek-clustering problem with some distributions of the collections Reuters 21578, including some used for more general grouping problem." @default.
- W1491165167 created "2016-06-24" @default.
- W1491165167 creator A5004361470 @default.
- W1491165167 creator A5078445639 @default.
- W1491165167 creator A5089893840 @default.
- W1491165167 date "2010-01-01" @default.
- W1491165167 modified "2023-09-26" @default.
- W1491165167 title "Algorithms of Machine Learning for K-Clustering" @default.
- W1491165167 cites W2039035221 @default.
- W1491165167 cites W2124898934 @default.
- W1491165167 cites W2146016260 @default.
- W1491165167 cites W4236708806 @default.
- W1491165167 doi "https://doi.org/10.1007/978-3-642-12433-4_53" @default.
- W1491165167 hasPublicationYear "2010" @default.
- W1491165167 type Work @default.
- W1491165167 sameAs 1491165167 @default.
- W1491165167 citedByCount "3" @default.
- W1491165167 countsByYear W14911651672017 @default.
- W1491165167 countsByYear W14911651672020 @default.
- W1491165167 crossrefType "book-chapter" @default.
- W1491165167 hasAuthorship W1491165167A5004361470 @default.
- W1491165167 hasAuthorship W1491165167A5078445639 @default.
- W1491165167 hasAuthorship W1491165167A5089893840 @default.
- W1491165167 hasConcept C119857082 @default.
- W1491165167 hasConcept C124101348 @default.
- W1491165167 hasConcept C154945302 @default.
- W1491165167 hasConcept C164866538 @default.
- W1491165167 hasConcept C199360897 @default.
- W1491165167 hasConcept C41008148 @default.
- W1491165167 hasConcept C73555534 @default.
- W1491165167 hasConcept C80444323 @default.
- W1491165167 hasConcept C8880873 @default.
- W1491165167 hasConceptScore W1491165167C119857082 @default.
- W1491165167 hasConceptScore W1491165167C124101348 @default.
- W1491165167 hasConceptScore W1491165167C154945302 @default.
- W1491165167 hasConceptScore W1491165167C164866538 @default.
- W1491165167 hasConceptScore W1491165167C199360897 @default.
- W1491165167 hasConceptScore W1491165167C41008148 @default.
- W1491165167 hasConceptScore W1491165167C73555534 @default.
- W1491165167 hasConceptScore W1491165167C80444323 @default.
- W1491165167 hasConceptScore W1491165167C8880873 @default.
- W1491165167 hasLocation W14911651671 @default.
- W1491165167 hasOpenAccess W1491165167 @default.
- W1491165167 hasPrimaryLocation W14911651671 @default.
- W1491165167 hasRelatedWork W143945936 @default.
- W1491165167 hasRelatedWork W1486420678 @default.
- W1491165167 hasRelatedWork W1721780562 @default.
- W1491165167 hasRelatedWork W172300703 @default.
- W1491165167 hasRelatedWork W1885054399 @default.
- W1491165167 hasRelatedWork W2187050675 @default.
- W1491165167 hasRelatedWork W2398938158 @default.
- W1491165167 hasRelatedWork W2565151897 @default.
- W1491165167 hasRelatedWork W2766654293 @default.
- W1491165167 hasRelatedWork W2770798108 @default.
- W1491165167 hasRelatedWork W2920539417 @default.
- W1491165167 hasRelatedWork W2963088772 @default.
- W1491165167 hasRelatedWork W2963174546 @default.
- W1491165167 hasRelatedWork W2991710567 @default.
- W1491165167 hasRelatedWork W2998192474 @default.
- W1491165167 hasRelatedWork W3092290393 @default.
- W1491165167 hasRelatedWork W3123178540 @default.
- W1491165167 hasRelatedWork W3165694487 @default.
- W1491165167 hasRelatedWork W793359613 @default.
- W1491165167 hasRelatedWork W3037943320 @default.
- W1491165167 isParatext "false" @default.
- W1491165167 isRetracted "false" @default.
- W1491165167 magId "1491165167" @default.
- W1491165167 workType "book-chapter" @default.