Matches in SemOpenAlex for { <https://semopenalex.org/work/W1493809586> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1493809586 endingPage "514" @default.
- W1493809586 startingPage "507" @default.
- W1493809586 abstract "The following results on uniqueness of invariant means are shown: (i) Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a connected almost simple algebraic group defined over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Q> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Q</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Assume that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G left-parenthesis double-struck upper R right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {G}(mathbb {R})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the group of the real points in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is not compact. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime, and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G left-parenthesis double-struck upper Z Subscript p Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {G}({mathbb {Z}}_{p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the compact <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Lie group of the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Z Subscript p> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>{mathbb {Z}}_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>–points in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then the normalized Haar measure on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper G left-parenthesis double-struck upper Z Subscript p Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {G}({mathbb {Z}}_{p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unique invariant mean on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript normal infinity Baseline left-parenthesis double-struck upper G left-parenthesis double-struck upper Z Subscript p Baseline right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>G</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>L^{infty }(mathbb {G}({mathbb {Z}}_{p}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. (ii) Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a semisimple Lie group with finite centre and without compact factors, and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a lattice in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then integration against the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>–invariant probability measure on the homogeneous space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G slash normal upper Gamma> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>G/Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unique <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>–invariant mean on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript normal infinity Baseline left-parenthesis upper G slash normal upper Gamma right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>L^{infty } (G/Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1493809586 created "2016-06-24" @default.
- W1493809586 creator A5027629825 @default.
- W1493809586 date "1998-01-01" @default.
- W1493809586 modified "2023-09-25" @default.
- W1493809586 title "On uniqueness of invariant means" @default.
- W1493809586 cites W1534739489 @default.
- W1493809586 cites W1577294152 @default.
- W1493809586 cites W162630427 @default.
- W1493809586 cites W1967163105 @default.
- W1493809586 cites W1989515780 @default.
- W1493809586 cites W2004602706 @default.
- W1493809586 cites W2022208441 @default.
- W1493809586 cites W2043010337 @default.
- W1493809586 cites W2056169178 @default.
- W1493809586 cites W2058998107 @default.
- W1493809586 cites W2083095460 @default.
- W1493809586 cites W2085585078 @default.
- W1493809586 cites W2090776581 @default.
- W1493809586 cites W2102518283 @default.
- W1493809586 cites W2166435158 @default.
- W1493809586 cites W2276819529 @default.
- W1493809586 cites W2297090933 @default.
- W1493809586 cites W2316776642 @default.
- W1493809586 cites W2330826507 @default.
- W1493809586 cites W2331486915 @default.
- W1493809586 cites W39439965 @default.
- W1493809586 cites W4206373830 @default.
- W1493809586 cites W4230796852 @default.
- W1493809586 cites W4248990241 @default.
- W1493809586 doi "https://doi.org/10.1090/s0002-9939-98-04044-1" @default.
- W1493809586 hasPublicationYear "1998" @default.
- W1493809586 type Work @default.
- W1493809586 sameAs 1493809586 @default.
- W1493809586 citedByCount "38" @default.
- W1493809586 countsByYear W14938095862012 @default.
- W1493809586 countsByYear W14938095862013 @default.
- W1493809586 countsByYear W14938095862014 @default.
- W1493809586 countsByYear W14938095862016 @default.
- W1493809586 countsByYear W14938095862017 @default.
- W1493809586 countsByYear W14938095862019 @default.
- W1493809586 countsByYear W14938095862020 @default.
- W1493809586 countsByYear W14938095862021 @default.
- W1493809586 countsByYear W14938095862022 @default.
- W1493809586 crossrefType "journal-article" @default.
- W1493809586 hasAuthorship W1493809586A5027629825 @default.
- W1493809586 hasBestOaLocation W14938095861 @default.
- W1493809586 hasConcept C11413529 @default.
- W1493809586 hasConcept C134306372 @default.
- W1493809586 hasConcept C154945302 @default.
- W1493809586 hasConcept C2776321320 @default.
- W1493809586 hasConcept C2777021972 @default.
- W1493809586 hasConcept C33923547 @default.
- W1493809586 hasConcept C41008148 @default.
- W1493809586 hasConceptScore W1493809586C11413529 @default.
- W1493809586 hasConceptScore W1493809586C134306372 @default.
- W1493809586 hasConceptScore W1493809586C154945302 @default.
- W1493809586 hasConceptScore W1493809586C2776321320 @default.
- W1493809586 hasConceptScore W1493809586C2777021972 @default.
- W1493809586 hasConceptScore W1493809586C33923547 @default.
- W1493809586 hasConceptScore W1493809586C41008148 @default.
- W1493809586 hasIssue "2" @default.
- W1493809586 hasLocation W14938095861 @default.
- W1493809586 hasOpenAccess W1493809586 @default.
- W1493809586 hasPrimaryLocation W14938095861 @default.
- W1493809586 hasRelatedWork W1993453399 @default.
- W1493809586 hasRelatedWork W2014702954 @default.
- W1493809586 hasRelatedWork W2044115466 @default.
- W1493809586 hasRelatedWork W2129753336 @default.
- W1493809586 hasRelatedWork W2320758659 @default.
- W1493809586 hasRelatedWork W2325254006 @default.
- W1493809586 hasRelatedWork W2350012146 @default.
- W1493809586 hasRelatedWork W2352884825 @default.
- W1493809586 hasRelatedWork W2963488231 @default.
- W1493809586 hasRelatedWork W2222154592 @default.
- W1493809586 hasVolume "126" @default.
- W1493809586 isParatext "false" @default.
- W1493809586 isRetracted "false" @default.
- W1493809586 magId "1493809586" @default.
- W1493809586 workType "article" @default.