Matches in SemOpenAlex for { <https://semopenalex.org/work/W1494495071> ?p ?o ?g. }
- W1494495071 abstract "Peer to peer systems have been widely used in the internet. However, most of the peer to peer information systems are still missing some of the important features, for example cross-language IR (Information Retrieval) and collection selection / fusion features. Cross-language IR is the state-of-art research area in IR research community. It has not been used in any real world IR systems yet. Cross-language IR has the ability to issue a query in one language and receive documents in other languages. In typical peer to peer environment, users are from multiple countries. Their collections are definitely in multiple languages. Cross-language IR can help users to find documents more easily. E.g. many Chinese researchers will search research papers in both Chinese and English. With Cross-language IR, they can do one query in Chinese and get documents in two languages. The Out Of Vocabulary (OOV) problem is one of the key research areas in crosslanguage information retrieval. In recent years, web mining was shown to be one of the effective approaches to solving this problem. However, how to extract Multiword Lexical Units (MLUs) from the web content and how to select the correct translations from the extracted candidate MLUs are still two difficult problems in web mining based automated translation approaches. Discovering resource descriptions and merging results obtained from remote search engines are two key issues in distributed information retrieval studies. In uncooperative environments, query-based sampling and normalized-score based merging strategies are well-known approaches to solve such problems. However, such approaches only consider the content of the remote database but do not consider the retrieval performance of the remote search engine. This thesis presents research on building a peer to peer IR system with crosslanguage IR and advance collection profiling technique for fusion features. Particularly, this thesis first presents a new Chinese term measurement and new Chinese MLU extraction process that works well on small corpora. An approach to selection of MLUs in a more accurate manner is also presented. After that, this thesis proposes a collection profiling strategy which can discover not only collection content but also retrieval performance of the remote search engine. Based on collection profiling, a web-based query classification method and two collection fusion approaches are developed and presented in this thesis. Our experiments show that the proposed strategies are effective in merging results in uncooperative peer to peer environments. Here, an uncooperative environment is defined as each peer in the system is autonomous. Peer like to share documents but they do not share collection statistics. This environment is a typical peer to peer IR environment. Finally, all those approaches are grouped together to build up a secure peer to peer multilingual IR system that cooperates through X.509 and email system." @default.
- W1494495071 created "2016-06-24" @default.
- W1494495071 creator A5050104347 @default.
- W1494495071 date "2008-01-01" @default.
- W1494495071 modified "2023-09-27" @default.
- W1494495071 title "Peer to peer English/Chinese cross-language information retrieval" @default.
- W1494495071 cites W1480519300 @default.
- W1494495071 cites W1500174841 @default.
- W1494495071 cites W1507739880 @default.
- W1494495071 cites W1540841176 @default.
- W1494495071 cites W1540867239 @default.
- W1494495071 cites W1564059483 @default.
- W1494495071 cites W1568297139 @default.
- W1494495071 cites W1571421201 @default.
- W1494495071 cites W1585303489 @default.
- W1494495071 cites W1593045043 @default.
- W1494495071 cites W1596616010 @default.
- W1494495071 cites W1599955416 @default.
- W1494495071 cites W163255687 @default.
- W1494495071 cites W1660390307 @default.
- W1494495071 cites W1705028737 @default.
- W1494495071 cites W1836378862 @default.
- W1494495071 cites W1956559956 @default.
- W1494495071 cites W1986828474 @default.
- W1494495071 cites W1990734153 @default.
- W1494495071 cites W1995194906 @default.
- W1494495071 cites W1996034123 @default.
- W1494495071 cites W1997538087 @default.
- W1494495071 cites W2002682102 @default.
- W1494495071 cites W2007219304 @default.
- W1494495071 cites W2011557772 @default.
- W1494495071 cites W2018378073 @default.
- W1494495071 cites W2020795663 @default.
- W1494495071 cites W2023657004 @default.
- W1494495071 cites W2024181699 @default.
- W1494495071 cites W2026569863 @default.
- W1494495071 cites W2027913861 @default.
- W1494495071 cites W2029911720 @default.
- W1494495071 cites W2034200507 @default.
- W1494495071 cites W2036242317 @default.
- W1494495071 cites W2038526807 @default.
- W1494495071 cites W2041105950 @default.
- W1494495071 cites W2055543848 @default.
- W1494495071 cites W2060088491 @default.
- W1494495071 cites W2086253379 @default.
- W1494495071 cites W2094154703 @default.
- W1494495071 cites W2099849300 @default.
- W1494495071 cites W2102823665 @default.
- W1494495071 cites W2105258824 @default.
- W1494495071 cites W2110933113 @default.
- W1494495071 cites W2118669325 @default.
- W1494495071 cites W2120763999 @default.
- W1494495071 cites W2122166301 @default.
- W1494495071 cites W2123282296 @default.
- W1494495071 cites W2125725207 @default.
- W1494495071 cites W2131006463 @default.
- W1494495071 cites W2132285835 @default.
- W1494495071 cites W2133676034 @default.
- W1494495071 cites W2138151602 @default.
- W1494495071 cites W2147714431 @default.
- W1494495071 cites W2151833155 @default.
- W1494495071 cites W2159744538 @default.
- W1494495071 cites W2162059093 @default.
- W1494495071 cites W2168014536 @default.
- W1494495071 cites W2168723543 @default.
- W1494495071 cites W2221553715 @default.
- W1494495071 cites W2351505087 @default.
- W1494495071 cites W2495199414 @default.
- W1494495071 cites W2738227713 @default.
- W1494495071 cites W34395446 @default.
- W1494495071 cites W852643139 @default.
- W1494495071 cites W8870360 @default.
- W1494495071 cites W89382798 @default.
- W1494495071 cites W1491277366 @default.
- W1494495071 cites W2103063679 @default.
- W1494495071 hasPublicationYear "2008" @default.
- W1494495071 type Work @default.
- W1494495071 sameAs 1494495071 @default.
- W1494495071 citedByCount "0" @default.
- W1494495071 crossrefType "dissertation" @default.
- W1494495071 hasAuthorship W1494495071A5050104347 @default.
- W1494495071 hasConcept C110875604 @default.
- W1494495071 hasConcept C136764020 @default.
- W1494495071 hasConcept C138885662 @default.
- W1494495071 hasConcept C192028432 @default.
- W1494495071 hasConcept C204321447 @default.
- W1494495071 hasConcept C23123220 @default.
- W1494495071 hasConcept C26517878 @default.
- W1494495071 hasConcept C2777601683 @default.
- W1494495071 hasConcept C2778842860 @default.
- W1494495071 hasConcept C38652104 @default.
- W1494495071 hasConcept C41008148 @default.
- W1494495071 hasConcept C41895202 @default.
- W1494495071 hasConcept C534932454 @default.
- W1494495071 hasConcept C90288658 @default.
- W1494495071 hasConcept C97854310 @default.
- W1494495071 hasConcept C99016210 @default.
- W1494495071 hasConceptScore W1494495071C110875604 @default.
- W1494495071 hasConceptScore W1494495071C136764020 @default.
- W1494495071 hasConceptScore W1494495071C138885662 @default.