Matches in SemOpenAlex for { <https://semopenalex.org/work/W1495149611> ?p ?o ?g. }
- W1495149611 abstract "In many fields of science, engineering, and economics large amounts of data are stored and there is a need to analyze these data in order to extract information for various purposes. Data mining is a general concept involving different tools for performing this kind of analysis. The development of mathematical models and efficient algorithms is of key importance. In this thesis we discuss algorithms for the reduced rank regression problem and algorithms for the computation of the best multilinear rank approximation of tensors. The first two papers deal with the reduced rank regression problem, which is encountered in the field of state-space subspace system identification. More specifically the problem is [ min_{rank(X) = k} det (B - X A)(B - X A)tp, ] where $A$ and $B$ are given matrices and we want to find $X$ under a certain rank condition that minimizes the determinant. This problem is not properly stated since it involves implicit assumptions on $A$ and $B$ so that $(B - X A)(B - X A)tp$ is never singular. This deficiency of the determinant criterion is fixed by generalizing the minimization criterion to rank reduction and volume minimization of the objective matrix. The volume of a matrix is defined as the product of its nonzero singular values. We give an algorithm that solves the generalized problem and identify properties of the input and output signals causing a singular objective matrix. Classification problems occur in many applications. The task is to determine the label or class of an unknown object. The third paper concerns with classification of handwritten digits in the context of tensors or multidimensional data arrays. Tensor and multilinear algebra is an area that attracts more and more attention because of the multidimensional structure of the collected data in various applications. Two classification algorithms are given based on the higher order singular value decomposition (HOSVD). The main algorithm makes a data reduction using HOSVD of 98--99 % prior the construction of the class models. The models are computed as a set of orthonormal bases spanning the dominant subspaces for the different classes. An unknown digit is expressed as a linear combination of the basis vectors. The resulting algorithm achieves 5% in classification error with fairly low amount of computations. The remaining two papers discuss computational methods for the best multilinear rank approximation problem [ min_{cB} | cA - cB| ] where $cA$ is a given tensor and we seek the best low multilinear rank approximation tensor $cB$. This is a generalization of the best low rank matrix approximation problem. It is well known that for matrices the solution is given by truncating the singular values in the singular value decomposition (SVD) of the matrix. But for tensors in general the truncated HOSVD does not give an optimal approximation. For example, a third order tensor $cB in RR^{I x J x K}$ with rank$(cB) = (r_1,r_2,r_3)$ can be written as the product [ cB = tml{X,Y,Z}{cC}, qquad b_{ijk}=sum_{lambda,mu,nu} x_{ilambda} y_{jmu} z_{knu} c_{lambdamunu}, ] where $cC in RR^{r_1 x r_2 x r_3}$ and $X in RR^{I times r_1}$, $Y in RR^{J times r_2}$, and $Z in RR^{K times r_3}$ are matrices of full column rank. Since it is no restriction to assume that $X$, $Y$, and $Z$ have orthonormal columns and due to these constraints, the approximation problem can be considered as a nonlinear optimization problem defined on a product of Grassmann manifolds. We introduce novel techniques for multilinear algebraic manipulations enabling means for theoretical analysis and algorithmic implementation. These techniques are used to solve the approximation problem using Newton and Quasi-Newton methods specifically adapted to operate on products of Grassmann manifolds. The presented algorithms are suited for small, large and sparse problems and, when applied on difficult problems, they clearly outperform alternating least squares methods, which are standard in the field." @default.
- W1495149611 created "2016-06-24" @default.
- W1495149611 creator A5050794507 @default.
- W1495149611 creator A5066480361 @default.
- W1495149611 date "2008-01-01" @default.
- W1495149611 modified "2023-09-27" @default.
- W1495149611 title "Best multilinear rank approximation of tensors with quasi-Newton methods on Grassmannians" @default.
- W1495149611 cites W1506690472 @default.
- W1495149611 cites W1775346971 @default.
- W1495149611 cites W1804110266 @default.
- W1495149611 cites W1963826206 @default.
- W1495149611 cites W1974824893 @default.
- W1495149611 cites W2013912476 @default.
- W1495149611 cites W2016663659 @default.
- W1495149611 cites W2018282388 @default.
- W1495149611 cites W2020062309 @default.
- W1495149611 cites W2027559251 @default.
- W1495149611 cites W2036718271 @default.
- W1495149611 cites W2037271374 @default.
- W1495149611 cites W2045512849 @default.
- W1495149611 cites W2068484625 @default.
- W1495149611 cites W2072175279 @default.
- W1495149611 cites W2084074491 @default.
- W1495149611 cites W2084839116 @default.
- W1495149611 cites W2090799283 @default.
- W1495149611 cites W2110662303 @default.
- W1495149611 cites W2117838659 @default.
- W1495149611 cites W2120077398 @default.
- W1495149611 cites W2148507357 @default.
- W1495149611 cites W2154021490 @default.
- W1495149611 cites W2156982859 @default.
- W1495149611 cites W2160551639 @default.
- W1495149611 cites W2264065105 @default.
- W1495149611 cites W2330159389 @default.
- W1495149611 cites W2607928667 @default.
- W1495149611 cites W3029645440 @default.
- W1495149611 cites W32702425 @default.
- W1495149611 hasPublicationYear "2008" @default.
- W1495149611 type Work @default.
- W1495149611 sameAs 1495149611 @default.
- W1495149611 citedByCount "9" @default.
- W1495149611 crossrefType "journal-article" @default.
- W1495149611 hasAuthorship W1495149611A5050794507 @default.
- W1495149611 hasAuthorship W1495149611A5066480361 @default.
- W1495149611 hasConcept C106487976 @default.
- W1495149611 hasConcept C109282560 @default.
- W1495149611 hasConcept C11413529 @default.
- W1495149611 hasConcept C114614502 @default.
- W1495149611 hasConcept C121332964 @default.
- W1495149611 hasConcept C12362212 @default.
- W1495149611 hasConcept C126255220 @default.
- W1495149611 hasConcept C134306372 @default.
- W1495149611 hasConcept C155281189 @default.
- W1495149611 hasConcept C158693339 @default.
- W1495149611 hasConcept C159985019 @default.
- W1495149611 hasConcept C164226766 @default.
- W1495149611 hasConcept C192562407 @default.
- W1495149611 hasConcept C202444582 @default.
- W1495149611 hasConcept C32834561 @default.
- W1495149611 hasConcept C33923547 @default.
- W1495149611 hasConcept C62520636 @default.
- W1495149611 hasConcept C84392682 @default.
- W1495149611 hasConcept C90199385 @default.
- W1495149611 hasConcept C9652623 @default.
- W1495149611 hasConceptScore W1495149611C106487976 @default.
- W1495149611 hasConceptScore W1495149611C109282560 @default.
- W1495149611 hasConceptScore W1495149611C11413529 @default.
- W1495149611 hasConceptScore W1495149611C114614502 @default.
- W1495149611 hasConceptScore W1495149611C121332964 @default.
- W1495149611 hasConceptScore W1495149611C12362212 @default.
- W1495149611 hasConceptScore W1495149611C126255220 @default.
- W1495149611 hasConceptScore W1495149611C134306372 @default.
- W1495149611 hasConceptScore W1495149611C155281189 @default.
- W1495149611 hasConceptScore W1495149611C158693339 @default.
- W1495149611 hasConceptScore W1495149611C159985019 @default.
- W1495149611 hasConceptScore W1495149611C164226766 @default.
- W1495149611 hasConceptScore W1495149611C192562407 @default.
- W1495149611 hasConceptScore W1495149611C202444582 @default.
- W1495149611 hasConceptScore W1495149611C32834561 @default.
- W1495149611 hasConceptScore W1495149611C33923547 @default.
- W1495149611 hasConceptScore W1495149611C62520636 @default.
- W1495149611 hasConceptScore W1495149611C84392682 @default.
- W1495149611 hasConceptScore W1495149611C90199385 @default.
- W1495149611 hasConceptScore W1495149611C9652623 @default.
- W1495149611 hasLocation W14951496111 @default.
- W1495149611 hasOpenAccess W1495149611 @default.
- W1495149611 hasPrimaryLocation W14951496111 @default.
- W1495149611 hasRelatedWork W1775346971 @default.
- W1495149611 hasRelatedWork W1804110266 @default.
- W1495149611 hasRelatedWork W1963826206 @default.
- W1495149611 hasRelatedWork W1978376511 @default.
- W1495149611 hasRelatedWork W1991042426 @default.
- W1495149611 hasRelatedWork W2013912476 @default.
- W1495149611 hasRelatedWork W2018282388 @default.
- W1495149611 hasRelatedWork W2024165284 @default.
- W1495149611 hasRelatedWork W2024166170 @default.
- W1495149611 hasRelatedWork W2024182011 @default.
- W1495149611 hasRelatedWork W2027559251 @default.
- W1495149611 hasRelatedWork W2028324955 @default.
- W1495149611 hasRelatedWork W2036718271 @default.