Matches in SemOpenAlex for { <https://semopenalex.org/work/W1495826104> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W1495826104 endingPage "34" @default.
- W1495826104 startingPage "25" @default.
- W1495826104 abstract "Threshold schemes allow any t out of l individuals to recompute a secret (key). General sharing schemes are a generalization. In homomorphic sharing schemes the of shares of the keys gives a share of the product of the keys. We prove that there exist infinitely many Abelian groups over which there does not exist an ideal homomorphic threshold scheme. Additionally we classify ideal homomorphic general sharing schemes. We discuss the potential impact of our result on the construction of general sharing schemes." @default.
- W1495826104 created "2016-06-24" @default.
- W1495826104 creator A5002074833 @default.
- W1495826104 creator A5008979622 @default.
- W1495826104 date "2007-08-08" @default.
- W1495826104 modified "2023-10-17" @default.
- W1495826104 title "Classification of Ideal Homomorphic Threshold Schemes over Finite Abelian Groups" @default.
- W1495826104 cites W1509722527 @default.
- W1495826104 cites W1883290937 @default.
- W1495826104 cites W1990304797 @default.
- W1495826104 cites W2015965749 @default.
- W1495826104 cites W2031906711 @default.
- W1495826104 cites W2058972589 @default.
- W1495826104 cites W2087217107 @default.
- W1495826104 cites W2099000090 @default.
- W1495826104 cites W2109394932 @default.
- W1495826104 cites W2141420453 @default.
- W1495826104 cites W2159401786 @default.
- W1495826104 doi "https://doi.org/10.1007/3-540-47555-9_2" @default.
- W1495826104 hasPublicationYear "2007" @default.
- W1495826104 type Work @default.
- W1495826104 sameAs 1495826104 @default.
- W1495826104 citedByCount "11" @default.
- W1495826104 countsByYear W14958261042021 @default.
- W1495826104 countsByYear W14958261042022 @default.
- W1495826104 crossrefType "book-chapter" @default.
- W1495826104 hasAuthorship W1495826104A5002074833 @default.
- W1495826104 hasAuthorship W1495826104A5008979622 @default.
- W1495826104 hasBestOaLocation W14958261041 @default.
- W1495826104 hasConcept C136170076 @default.
- W1495826104 hasConcept C148730421 @default.
- W1495826104 hasConcept C158338273 @default.
- W1495826104 hasConcept C17744445 @default.
- W1495826104 hasConcept C199539241 @default.
- W1495826104 hasConcept C202444582 @default.
- W1495826104 hasConcept C2776639384 @default.
- W1495826104 hasConcept C33923547 @default.
- W1495826104 hasConcept C38652104 @default.
- W1495826104 hasConcept C41008148 @default.
- W1495826104 hasConceptScore W1495826104C136170076 @default.
- W1495826104 hasConceptScore W1495826104C148730421 @default.
- W1495826104 hasConceptScore W1495826104C158338273 @default.
- W1495826104 hasConceptScore W1495826104C17744445 @default.
- W1495826104 hasConceptScore W1495826104C199539241 @default.
- W1495826104 hasConceptScore W1495826104C202444582 @default.
- W1495826104 hasConceptScore W1495826104C2776639384 @default.
- W1495826104 hasConceptScore W1495826104C33923547 @default.
- W1495826104 hasConceptScore W1495826104C38652104 @default.
- W1495826104 hasConceptScore W1495826104C41008148 @default.
- W1495826104 hasLocation W14958261041 @default.
- W1495826104 hasOpenAccess W1495826104 @default.
- W1495826104 hasPrimaryLocation W14958261041 @default.
- W1495826104 hasRelatedWork W1495826104 @default.
- W1495826104 hasRelatedWork W1497986648 @default.
- W1495826104 hasRelatedWork W1621832448 @default.
- W1495826104 hasRelatedWork W1678370088 @default.
- W1495826104 hasRelatedWork W2021494526 @default.
- W1495826104 hasRelatedWork W2032361691 @default.
- W1495826104 hasRelatedWork W2149376139 @default.
- W1495826104 hasRelatedWork W3083642434 @default.
- W1495826104 hasRelatedWork W4230883232 @default.
- W1495826104 hasRelatedWork W2056205479 @default.
- W1495826104 isParatext "false" @default.
- W1495826104 isRetracted "false" @default.
- W1495826104 magId "1495826104" @default.
- W1495826104 workType "book-chapter" @default.