Matches in SemOpenAlex for { <https://semopenalex.org/work/W1496001636> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1496001636 abstract "Frame Theory is a modern branch of Harmonic Analysis. It has its roots in Communication Theory and Quantum Mechanics. Frames are overcomplete and stable families of functions which provide non-unique and non-orthogonal series representations for each element of the space.The first milestone was set 1946 by Gabor with the paper ''Theory of communications''. He formulated a fundamental approach to signal decomposition in terms of elementary signals generated by translations and modulations of a Gaussian. The frames for Hilbert spaces were formally defined for the first time 1952 by Duffin and Schaeffer in their fundamental paper ''A class of nonharmonic Fourier series''. The breakthrough of frames came 1986 with Daubechies, Grossmann and Meyer's paper ''Painless nonorthogonal expansions''. Since then a lot of scientists have been investigating frames from different points of view.In this thesis we study non-stationary sibling frames, in general, and the possibility to construct such function families in spline spaces, in particular. Our work follows a theoretical, constructive track. Nonetheless, as demonstrated by several papers by Daubechies and other authors, frames are very useful in various areas of Applied Mathematics, including Signal and Image Processing, Data Compression and Signal Detection. The overcompleteness of the system incorporates redundant information in the frame coefficients. In certain applications one can take advantage of these correlations.The content of this thesis can be split naturally into three parts: Chapters 1-3 introduce basic definitions, necessary notations and classical results from the General Frame Theory, from B-Spline Theory and on non-stationary tight wavelet spline frames. Chapters 4-5 describe the theory we developed for sibling frames on an abstract level. The last chapter presents our explicit construction of a certain class of non-stationary sibling spline frames with vanishing moments in L_2[a,b] which exemplifies and thus proves the applicability of our theoretical results from Chapters 4-5. As a principle of writing we did the best possible to make this thesis self-contained. Classical handbooks, recent monographs, fundamental research papers and survey articles from Wavelet, Frame and Spline Theory are cited for further - more detailed - reading.In Chapter 3 we summarize the considerations on normalized tight spline frames of Chui, He and Stoeckler and some of the results from their article ''Nonstationary tight wavelet frames. I: Bounded intervals'' (see Appl. Comp. Harm. Anal. 17 (2004), 141-197). Our work detailed in Chapters 4-6 is meant to extend and supplement their theory for bounded intervals. Chapter 4 deals with our extension of the general construction principle of non-stationary wavelet frames from the tight case to the non-tight (= sibling) case on which our present work focuses. We apply this principle in Chapter 6 in order to give a general construction scheme for certain non-stationary sibling spline frames of order m with L vanishing moments (m in N, m >= 2, 1 <= L <= m), as well as some concrete illustrative examples. Chapter 4 presents in Subsection 4.3.3 the motivation for our detailed investigations in Chapter 5. We need some sufficient conditions on the function families defined by coefficient matrices which are as simple as possible, in order to be able to verify easily if some concrete spline families are Bessel families (and thus sibling frames) or not. In Chapter 5 we develop general strategies for proving the boundedness of certain linear operators. These will enable us to check in Chapter 6 the Bessel condition for concrete spline systems which are our candidates for sibling spline frames. Some results concerning multivariate Bessel families are also included." @default.
- W1496001636 created "2016-06-24" @default.
- W1496001636 creator A5014404906 @default.
- W1496001636 date "2007-03-21" @default.
- W1496001636 modified "2023-09-27" @default.
- W1496001636 title "Non-stationary Sibling Wavelet Frames on Bounded Intervals" @default.
- W1496001636 cites W1506013563 @default.
- W1496001636 cites W1565463375 @default.
- W1496001636 cites W1567470553 @default.
- W1496001636 cites W1601778925 @default.
- W1496001636 cites W1605417594 @default.
- W1496001636 cites W1939897336 @default.
- W1496001636 cites W1983772857 @default.
- W1496001636 cites W2021813574 @default.
- W1496001636 cites W2026786135 @default.
- W1496001636 cites W2062024414 @default.
- W1496001636 cites W2088277224 @default.
- W1496001636 cites W2090344516 @default.
- W1496001636 cites W2092543127 @default.
- W1496001636 cites W2100395640 @default.
- W1496001636 cites W2115755118 @default.
- W1496001636 cites W2119337797 @default.
- W1496001636 cites W2125555749 @default.
- W1496001636 cites W2126777570 @default.
- W1496001636 cites W2137852732 @default.
- W1496001636 cites W2154003217 @default.
- W1496001636 cites W2243728138 @default.
- W1496001636 cites W2325330392 @default.
- W1496001636 cites W24034656 @default.
- W1496001636 cites W2567032824 @default.
- W1496001636 cites W3161439748 @default.
- W1496001636 cites W66947680 @default.
- W1496001636 cites W2087377426 @default.
- W1496001636 hasPublicationYear "2007" @default.
- W1496001636 type Work @default.
- W1496001636 sameAs 1496001636 @default.
- W1496001636 citedByCount "0" @default.
- W1496001636 crossrefType "dissertation" @default.
- W1496001636 hasAuthorship W1496001636A5014404906 @default.
- W1496001636 hasConcept C136119220 @default.
- W1496001636 hasConcept C154945302 @default.
- W1496001636 hasConcept C199343813 @default.
- W1496001636 hasConcept C202444582 @default.
- W1496001636 hasConcept C2777686260 @default.
- W1496001636 hasConcept C33923547 @default.
- W1496001636 hasConcept C41008148 @default.
- W1496001636 hasConcept C47432892 @default.
- W1496001636 hasConcept C71924100 @default.
- W1496001636 hasConceptScore W1496001636C136119220 @default.
- W1496001636 hasConceptScore W1496001636C154945302 @default.
- W1496001636 hasConceptScore W1496001636C199343813 @default.
- W1496001636 hasConceptScore W1496001636C202444582 @default.
- W1496001636 hasConceptScore W1496001636C2777686260 @default.
- W1496001636 hasConceptScore W1496001636C33923547 @default.
- W1496001636 hasConceptScore W1496001636C41008148 @default.
- W1496001636 hasConceptScore W1496001636C47432892 @default.
- W1496001636 hasConceptScore W1496001636C71924100 @default.
- W1496001636 hasLocation W14960016361 @default.
- W1496001636 hasOpenAccess W1496001636 @default.
- W1496001636 hasPrimaryLocation W14960016361 @default.
- W1496001636 hasRelatedWork W1532084947 @default.
- W1496001636 hasRelatedWork W1580822053 @default.
- W1496001636 hasRelatedWork W2025745739 @default.
- W1496001636 hasRelatedWork W2152804436 @default.
- W1496001636 hasRelatedWork W2173685355 @default.
- W1496001636 hasRelatedWork W2249836621 @default.
- W1496001636 hasRelatedWork W2253279868 @default.
- W1496001636 hasRelatedWork W2599921918 @default.
- W1496001636 hasRelatedWork W2897077777 @default.
- W1496001636 hasRelatedWork W2950967769 @default.
- W1496001636 hasRelatedWork W2951177845 @default.
- W1496001636 hasRelatedWork W3040411081 @default.
- W1496001636 hasRelatedWork W3049190636 @default.
- W1496001636 hasRelatedWork W3210855437 @default.
- W1496001636 hasRelatedWork W3755876 @default.
- W1496001636 hasRelatedWork W582517995 @default.
- W1496001636 hasRelatedWork W617439666 @default.
- W1496001636 hasRelatedWork W636294148 @default.
- W1496001636 hasRelatedWork W83841682 @default.
- W1496001636 hasRelatedWork W2253953478 @default.
- W1496001636 isParatext "false" @default.
- W1496001636 isRetracted "false" @default.
- W1496001636 magId "1496001636" @default.
- W1496001636 workType "dissertation" @default.