Matches in SemOpenAlex for { <https://semopenalex.org/work/W1496009621> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W1496009621 endingPage "463" @default.
- W1496009621 startingPage "447" @default.
- W1496009621 abstract "A classical question in combinatorics is the following: given a partial Latin square $P$, when can we complete $P$ to a Latin square $L$? In this paper, we investigate the class of textbf{$epsilon$-dense partial Latin squares}: partial Latin squares in which each symbol, row, and column contains no more than $epsilon n$-many nonblank cells. Based on a conjecture of Nash-Williams, Daykin and Haggkvist conjectured that all $frac{1}{4}$-dense partial Latin squares are completable. In this paper, we will discuss the proof methods and results used in previous attempts to resolve this conjecture, introduce a novel technique derived from a paper by Jacobson and Matthews on generating random Latin squares, and use this novel technique to study $ epsilon$-dense partial Latin squares that contain no more than $delta n^2$ filled cells in total. In Chapter 2, we construct completions for all $ epsilon$-dense partial Latin squares containing no more than $delta n^2$ filled cells in total, given that $epsilon If we omit the probabilistic techniques noted above, we further show that such completions can always be found in polynomial time. This contrasts a result of Colbourn, which states that completing arbitrary partial Latin squares is an NP-complete task. In Chapter 3, we strengthen Colbourn's result to the claim that completing an arbitrary $left(frac{1}{2} + epsilonright)$-dense partial Latin square is NP-complete, for any $epsilon > 0$. Colbourn's result hinges heavily on a connection between triangulations of tripartite graphs and Latin squares. Motivated by this, we use our results on Latin squares to prove that any tripartite graph $G = (V_1, V_2, V_3)$ such thatbegin{itemize}item $|V_1| = |V_2| = |V_3| = n$,item For every vertex $v in V_i$, $deg_+(v) = deg_-(v) geq (1- epsilon)n,$ anditem $|E(G)| > (1 - delta)cdot 3n^2$end{itemize} admits a triangulation, if $epsilon This strengthens results of Gustavsson, which requires $epsilon = delta = 10^{-7}$. In an unrelated vein, Chapter 6 explores the class of textbf{quasirandom graphs}, a notion first introduced by Chung, Graham and Wilson cite{chung1989quasi} in 1989. Roughly speaking, a sequence of graphs is called quasirandom' if it has a number of properties possessed by the random graph, all of which turn out to be equivalent. In this chapter, we study possible extensions of these results to random $k$-edge colorings, and create an analogue of Chung, Graham and Wilson's result for such colorings." @default.
- W1496009621 created "2016-06-24" @default.
- W1496009621 creator A5040736324 @default.
- W1496009621 date "2013-10-01" @default.
- W1496009621 modified "2023-09-27" @default.
- W1496009621 title "Completions of ε-Dense Partial Latin Squares" @default.
- W1496009621 cites W122375747 @default.
- W1496009621 cites W1504418244 @default.
- W1496009621 cites W2003670649 @default.
- W1496009621 cites W2037688303 @default.
- W1496009621 cites W2056965013 @default.
- W1496009621 cites W2135029440 @default.
- W1496009621 doi "https://doi.org/10.7907/gqze-rb50." @default.
- W1496009621 hasPublicationYear "2013" @default.
- W1496009621 type Work @default.
- W1496009621 sameAs 1496009621 @default.
- W1496009621 citedByCount "6" @default.
- W1496009621 countsByYear W14960096212013 @default.
- W1496009621 countsByYear W14960096212014 @default.
- W1496009621 countsByYear W14960096212016 @default.
- W1496009621 countsByYear W14960096212017 @default.
- W1496009621 crossrefType "journal-article" @default.
- W1496009621 hasAuthorship W1496009621A5040736324 @default.
- W1496009621 hasConcept C100544194 @default.
- W1496009621 hasConcept C105795698 @default.
- W1496009621 hasConcept C114614502 @default.
- W1496009621 hasConcept C118615104 @default.
- W1496009621 hasConcept C135692309 @default.
- W1496009621 hasConcept C154945302 @default.
- W1496009621 hasConcept C158887663 @default.
- W1496009621 hasConcept C185592680 @default.
- W1496009621 hasConcept C22354355 @default.
- W1496009621 hasConcept C2524010 @default.
- W1496009621 hasConcept C2777212361 @default.
- W1496009621 hasConcept C2780990831 @default.
- W1496009621 hasConcept C31903555 @default.
- W1496009621 hasConcept C33923547 @default.
- W1496009621 hasConcept C41008148 @default.
- W1496009621 hasConcept C70262065 @default.
- W1496009621 hasConceptScore W1496009621C100544194 @default.
- W1496009621 hasConceptScore W1496009621C105795698 @default.
- W1496009621 hasConceptScore W1496009621C114614502 @default.
- W1496009621 hasConceptScore W1496009621C118615104 @default.
- W1496009621 hasConceptScore W1496009621C135692309 @default.
- W1496009621 hasConceptScore W1496009621C154945302 @default.
- W1496009621 hasConceptScore W1496009621C158887663 @default.
- W1496009621 hasConceptScore W1496009621C185592680 @default.
- W1496009621 hasConceptScore W1496009621C22354355 @default.
- W1496009621 hasConceptScore W1496009621C2524010 @default.
- W1496009621 hasConceptScore W1496009621C2777212361 @default.
- W1496009621 hasConceptScore W1496009621C2780990831 @default.
- W1496009621 hasConceptScore W1496009621C31903555 @default.
- W1496009621 hasConceptScore W1496009621C33923547 @default.
- W1496009621 hasConceptScore W1496009621C41008148 @default.
- W1496009621 hasConceptScore W1496009621C70262065 @default.
- W1496009621 hasIssue "10" @default.
- W1496009621 hasLocation W14960096211 @default.
- W1496009621 hasOpenAccess W1496009621 @default.
- W1496009621 hasPrimaryLocation W14960096211 @default.
- W1496009621 hasRelatedWork W147060242 @default.
- W1496009621 hasRelatedWork W1523753394 @default.
- W1496009621 hasRelatedWork W1967788202 @default.
- W1496009621 hasRelatedWork W2002998293 @default.
- W1496009621 hasRelatedWork W2013498250 @default.
- W1496009621 hasRelatedWork W2023237977 @default.
- W1496009621 hasRelatedWork W2033627833 @default.
- W1496009621 hasRelatedWork W2040253880 @default.
- W1496009621 hasRelatedWork W2069392999 @default.
- W1496009621 hasRelatedWork W2105475350 @default.
- W1496009621 hasRelatedWork W2114661539 @default.
- W1496009621 hasRelatedWork W2145581755 @default.
- W1496009621 hasRelatedWork W2154749105 @default.
- W1496009621 hasRelatedWork W2597309531 @default.
- W1496009621 hasRelatedWork W2924428172 @default.
- W1496009621 hasRelatedWork W2951162958 @default.
- W1496009621 hasRelatedWork W2952702963 @default.
- W1496009621 hasRelatedWork W3153480985 @default.
- W1496009621 hasRelatedWork W3158379883 @default.
- W1496009621 hasRelatedWork W3204880937 @default.
- W1496009621 hasVolume "21" @default.
- W1496009621 isParatext "false" @default.
- W1496009621 isRetracted "false" @default.
- W1496009621 magId "1496009621" @default.
- W1496009621 workType "article" @default.