Matches in SemOpenAlex for { <https://semopenalex.org/work/W1496185622> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1496185622 abstract "Sensors are essential components of modern control systems. Any faults in sensors will affect the overall performance of a system because their effects can easily propagate to manipulative variables through feedback control loops and also disturb other process variables. The task for sensor validation is to detect and isolate faulty sensors and estimate fault magnitudes afterwards to provide fault-free values. Model-based methods constitute an important approach to sensor fault detection and isolation (FDI). A model-based approach consists in generating residuals as the difference between the measurements and the estimates provided by the relationships existing between the various variables of the process. The analysis of these residuals may lead to detect and isolate the faulty sensors. Almost all conventional model-based methods presume the knowledge of an accurate model of the system, e.g. transfer function or system matrices in the state space representation. Principal component Analysis (PCA) is a data-driven method which is particularly well adapted to reveal linear relationships among the plant variables without formulating them explicitly and has also been employed for system identification. PCA has some other nice features. It can handle high dimensional and correlated process variables, provides a natural solution to the errors-in-variables problem and includes disturbance decoupling (Li & Qin, 2001). Moreover in the FDI field, Gertler & McAvoy (1997) have shown a close link between PCA and parity space method. Principal component analysis (PCA) has then been applied successfully in the monitoring of complex systems (Chiang & Colegrove, 2007; Harkat et al., 2006; Kano & Nakagawa, 2008). 17" @default.
- W1496185622 created "2016-06-24" @default.
- W1496185622 creator A5051424962 @default.
- W1496185622 creator A5057960859 @default.
- W1496185622 creator A5059062747 @default.
- W1496185622 creator A5077176947 @default.
- W1496185622 date "2010-03-01" @default.
- W1496185622 modified "2023-09-30" @default.
- W1496185622 title "Sensor Fault Detection and Isolation by Robust Principal Component Analysis" @default.
- W1496185622 cites W149129625 @default.
- W1496185622 cites W1636335504 @default.
- W1496185622 cites W1979486458 @default.
- W1496185622 cites W1980262437 @default.
- W1496185622 cites W1983963676 @default.
- W1496185622 cites W1990384678 @default.
- W1496185622 cites W1996405472 @default.
- W1496185622 cites W2001947364 @default.
- W1496185622 cites W2046033161 @default.
- W1496185622 cites W2057283314 @default.
- W1496185622 cites W2058496912 @default.
- W1496185622 cites W2072080277 @default.
- W1496185622 cites W2074058676 @default.
- W1496185622 cites W2087346698 @default.
- W1496185622 cites W2090989005 @default.
- W1496185622 cites W2094087861 @default.
- W1496185622 cites W2149237924 @default.
- W1496185622 cites W2169347809 @default.
- W1496185622 cites W2169487163 @default.
- W1496185622 cites W2170797631 @default.
- W1496185622 cites W2170905369 @default.
- W1496185622 cites W2618107106 @default.
- W1496185622 doi "https://doi.org/10.5772/9086" @default.
- W1496185622 hasPublicationYear "2010" @default.
- W1496185622 type Work @default.
- W1496185622 sameAs 1496185622 @default.
- W1496185622 citedByCount "6" @default.
- W1496185622 countsByYear W14961856222012 @default.
- W1496185622 countsByYear W14961856222014 @default.
- W1496185622 countsByYear W14961856222015 @default.
- W1496185622 countsByYear W14961856222016 @default.
- W1496185622 countsByYear W14961856222019 @default.
- W1496185622 crossrefType "book-chapter" @default.
- W1496185622 hasAuthorship W1496185622A5051424962 @default.
- W1496185622 hasAuthorship W1496185622A5057960859 @default.
- W1496185622 hasAuthorship W1496185622A5059062747 @default.
- W1496185622 hasAuthorship W1496185622A5077176947 @default.
- W1496185622 hasBestOaLocation W14961856221 @default.
- W1496185622 hasConcept C152745839 @default.
- W1496185622 hasConcept C153180895 @default.
- W1496185622 hasConcept C154945302 @default.
- W1496185622 hasConcept C172707124 @default.
- W1496185622 hasConcept C27438332 @default.
- W1496185622 hasConcept C2775941552 @default.
- W1496185622 hasConcept C41008148 @default.
- W1496185622 hasConcept C86803240 @default.
- W1496185622 hasConcept C89423630 @default.
- W1496185622 hasConceptScore W1496185622C152745839 @default.
- W1496185622 hasConceptScore W1496185622C153180895 @default.
- W1496185622 hasConceptScore W1496185622C154945302 @default.
- W1496185622 hasConceptScore W1496185622C172707124 @default.
- W1496185622 hasConceptScore W1496185622C27438332 @default.
- W1496185622 hasConceptScore W1496185622C2775941552 @default.
- W1496185622 hasConceptScore W1496185622C41008148 @default.
- W1496185622 hasConceptScore W1496185622C86803240 @default.
- W1496185622 hasConceptScore W1496185622C89423630 @default.
- W1496185622 hasLocation W14961856221 @default.
- W1496185622 hasLocation W14961856222 @default.
- W1496185622 hasLocation W14961856223 @default.
- W1496185622 hasOpenAccess W1496185622 @default.
- W1496185622 hasPrimaryLocation W14961856221 @default.
- W1496185622 hasRelatedWork W1980511770 @default.
- W1496185622 hasRelatedWork W2002890496 @default.
- W1496185622 hasRelatedWork W2031910971 @default.
- W1496185622 hasRelatedWork W2052589448 @default.
- W1496185622 hasRelatedWork W2064127680 @default.
- W1496185622 hasRelatedWork W2086072340 @default.
- W1496185622 hasRelatedWork W2354332871 @default.
- W1496185622 hasRelatedWork W2373052636 @default.
- W1496185622 hasRelatedWork W3009843762 @default.
- W1496185622 hasRelatedWork W2474947501 @default.
- W1496185622 isParatext "false" @default.
- W1496185622 isRetracted "false" @default.
- W1496185622 magId "1496185622" @default.
- W1496185622 workType "book-chapter" @default.