Matches in SemOpenAlex for { <https://semopenalex.org/work/W1496513776> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1496513776 endingPage "7387" @default.
- W1496513776 startingPage "7382" @default.
- W1496513776 abstract "An important problem in systems biology is to reconstruct gene regulatory networks from experimental data and other a priori information. Based on linear regression techniques and significance tests, in this paper, an identification algorithm is developed using multifactorial perturbation experimental data. Basic ideas behind this algorithm are as follows. The larger the sum of residual squares, the weaker the direct regulatory interaction. Moreover, the higher the significance level of linear regression, the greater the probability of the existence of the direct regulatory interaction. To take both of them into consideration, a weight corresponding to a possible direct regulation is selected as their product. Besides, normalization of these weights have also been discussed, noting that in a gene regulatory network, some genes may be easily regulated by other genes, while regulations on some other genes may need more efforts. A distinguished feature of the algorithm is that the power law has been quantitatively incorporated into estimations, which is one important structure property that most large scale genetic regulatory networks approximately have. Through constructing loss functions and incorporating power law, and solving a 0–1 integer programming problem, direct regulation genes for an arbitrary gene can be estimated. The weight matrix is further adjusted using these estimated direct regulatory relationships. Computation results with the DREAM4 In Silico Size 100 Multifactorial subchallenge show that estimation performances of the suggested algorithm can even outperform the best team. Furthermore, the high precision of the obtained most reliable predictions imply that the suggested algorithm may be very helpful in guiding biological validation experiment designs." @default.
- W1496513776 created "2016-06-24" @default.
- W1496513776 creator A5031837948 @default.
- W1496513776 creator A5050103088 @default.
- W1496513776 date "2012-07-25" @default.
- W1496513776 modified "2023-09-22" @default.
- W1496513776 title "Gene regulatory network inference from multifactorial perturbation data" @default.
- W1496513776 hasPublicationYear "2012" @default.
- W1496513776 type Work @default.
- W1496513776 sameAs 1496513776 @default.
- W1496513776 citedByCount "0" @default.
- W1496513776 crossrefType "proceedings-article" @default.
- W1496513776 hasAuthorship W1496513776A5031837948 @default.
- W1496513776 hasAuthorship W1496513776A5050103088 @default.
- W1496513776 hasConcept C104317684 @default.
- W1496513776 hasConcept C111472728 @default.
- W1496513776 hasConcept C11413529 @default.
- W1496513776 hasConcept C124101348 @default.
- W1496513776 hasConcept C126255220 @default.
- W1496513776 hasConcept C136886441 @default.
- W1496513776 hasConcept C138885662 @default.
- W1496513776 hasConcept C144024400 @default.
- W1496513776 hasConcept C150194340 @default.
- W1496513776 hasConcept C154945302 @default.
- W1496513776 hasConcept C19165224 @default.
- W1496513776 hasConcept C2776214188 @default.
- W1496513776 hasConcept C33923547 @default.
- W1496513776 hasConcept C41008148 @default.
- W1496513776 hasConcept C54355233 @default.
- W1496513776 hasConcept C67339327 @default.
- W1496513776 hasConcept C75553542 @default.
- W1496513776 hasConcept C86803240 @default.
- W1496513776 hasConceptScore W1496513776C104317684 @default.
- W1496513776 hasConceptScore W1496513776C111472728 @default.
- W1496513776 hasConceptScore W1496513776C11413529 @default.
- W1496513776 hasConceptScore W1496513776C124101348 @default.
- W1496513776 hasConceptScore W1496513776C126255220 @default.
- W1496513776 hasConceptScore W1496513776C136886441 @default.
- W1496513776 hasConceptScore W1496513776C138885662 @default.
- W1496513776 hasConceptScore W1496513776C144024400 @default.
- W1496513776 hasConceptScore W1496513776C150194340 @default.
- W1496513776 hasConceptScore W1496513776C154945302 @default.
- W1496513776 hasConceptScore W1496513776C19165224 @default.
- W1496513776 hasConceptScore W1496513776C2776214188 @default.
- W1496513776 hasConceptScore W1496513776C33923547 @default.
- W1496513776 hasConceptScore W1496513776C41008148 @default.
- W1496513776 hasConceptScore W1496513776C54355233 @default.
- W1496513776 hasConceptScore W1496513776C67339327 @default.
- W1496513776 hasConceptScore W1496513776C75553542 @default.
- W1496513776 hasConceptScore W1496513776C86803240 @default.
- W1496513776 hasLocation W14965137761 @default.
- W1496513776 hasOpenAccess W1496513776 @default.
- W1496513776 hasPrimaryLocation W14965137761 @default.
- W1496513776 hasRelatedWork W1520746228 @default.
- W1496513776 hasRelatedWork W1587766869 @default.
- W1496513776 hasRelatedWork W1600339875 @default.
- W1496513776 hasRelatedWork W1997519047 @default.
- W1496513776 hasRelatedWork W2020012456 @default.
- W1496513776 hasRelatedWork W2027606895 @default.
- W1496513776 hasRelatedWork W2040143682 @default.
- W1496513776 hasRelatedWork W2048956475 @default.
- W1496513776 hasRelatedWork W2081034667 @default.
- W1496513776 hasRelatedWork W2099449343 @default.
- W1496513776 hasRelatedWork W2107463319 @default.
- W1496513776 hasRelatedWork W2136605310 @default.
- W1496513776 hasRelatedWork W2147730579 @default.
- W1496513776 hasRelatedWork W2154835728 @default.
- W1496513776 hasRelatedWork W2555503890 @default.
- W1496513776 hasRelatedWork W2587170806 @default.
- W1496513776 hasRelatedWork W2968131803 @default.
- W1496513776 hasRelatedWork W3205895047 @default.
- W1496513776 hasRelatedWork W57302952 @default.
- W1496513776 hasRelatedWork W965477175 @default.
- W1496513776 isParatext "false" @default.
- W1496513776 isRetracted "false" @default.
- W1496513776 magId "1496513776" @default.
- W1496513776 workType "article" @default.