Matches in SemOpenAlex for { <https://semopenalex.org/work/W1497007895> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W1497007895 endingPage "165" @default.
- W1497007895 startingPage "160" @default.
- W1497007895 abstract "Bioinformatics is a new, rapidly expanding field that uses computational approaches to answer biological questions (Baxevanis, 2005). These questions are answered by means of analyzing and mining biological data. The field of bioinformatics or computational biology is a multidisciplinary research and development environment, in which a variety of techniques from computer science, applied mathematics, linguistics, physics, and, statistics are used. The terms bioinformatics and computational biology are often used interchangeably (Baldi, 1998; Pevzner, 2000). This new area of research is driven by the wealth of data from high throughput genome projects, such as the human genome sequencing project (International Human Genome Sequencing Consortium, 2001; Venter, 2001). As of early 2006, 180 organisms have been sequenced, with the capacity to sequence constantly increasing. Three major DNA databases collaborate and mirror over 100 billion base pairs in Europe (EMBL), Japan (DDBJ) and the USA (Genbank.) The advent of high throughput methods for monitoring gene expression, such as microarrays (Schena, 1995) detecting the expression level of thousands of genes simultaneously. Such data can be utilized to establish gene function (functional genomics) (DeRisi, 1997). Recent advances in mass spectrometry and proteomics have made these fields high-throughput. Bioinformatics is an essential part of drug discovery, pharmacology, biotechnology, genetic engineering and a wide variety of other biological research areas. In the context of these proceedings, we emphasize that machine learning approaches, such as neural networks, hidden Markov models, or kernel machines, have emerged as good mathematical methods for analyzing (i.e. classifying, ranking, predicting, estimating and finding regularities on) biological datasets (Baldi, 1998). The field of bioinformatics has presented challenging problems to the machine learning community and the algorithms developed have resulted in new biological hypotheses. In summary, with the huge amount of information a mutually beneficial knowledge feedback has developed between theoretical disciplines and the life sciences. As further reading, we recommend the excellent “Bioinformatics: A Machine Learning Approach” (Baldi, 1998), which gives a thorough insight into topics, methods and common problems in Bioinformatics. The next section introduces the most important subfields of bioinformatics and computational biology. We go on to discuss current issues in bioinformatics and what we see are future trends." @default.
- W1497007895 created "2016-06-24" @default.
- W1497007895 creator A5023534840 @default.
- W1497007895 creator A5039052506 @default.
- W1497007895 date "2011-05-24" @default.
- W1497007895 modified "2023-09-23" @default.
- W1497007895 title "Bioinformatics and Computational Biology" @default.
- W1497007895 cites W1490430289 @default.
- W1497007895 cites W1510073064 @default.
- W1497007895 cites W1542652324 @default.
- W1497007895 cites W1996423252 @default.
- W1497007895 cites W2055043387 @default.
- W1497007895 cites W2100471807 @default.
- W1497007895 cites W2103017472 @default.
- W1497007895 cites W2108401170 @default.
- W1497007895 cites W2112414993 @default.
- W1497007895 cites W2118806902 @default.
- W1497007895 cites W2127230663 @default.
- W1497007895 cites W2131234009 @default.
- W1497007895 cites W2150118470 @default.
- W1497007895 cites W2150934173 @default.
- W1497007895 cites W2151253278 @default.
- W1497007895 cites W2165011536 @default.
- W1497007895 cites W2168069424 @default.
- W1497007895 cites W2168909179 @default.
- W1497007895 cites W2217809488 @default.
- W1497007895 doi "https://doi.org/10.4018/978-1-60566-010-3.ch026" @default.
- W1497007895 hasPublicationYear "2011" @default.
- W1497007895 type Work @default.
- W1497007895 sameAs 1497007895 @default.
- W1497007895 citedByCount "0" @default.
- W1497007895 crossrefType "book-chapter" @default.
- W1497007895 hasAuthorship W1497007895A5023534840 @default.
- W1497007895 hasAuthorship W1497007895A5039052506 @default.
- W1497007895 hasConcept C41008148 @default.
- W1497007895 hasConcept C70721500 @default.
- W1497007895 hasConcept C86803240 @default.
- W1497007895 hasConceptScore W1497007895C41008148 @default.
- W1497007895 hasConceptScore W1497007895C70721500 @default.
- W1497007895 hasConceptScore W1497007895C86803240 @default.
- W1497007895 hasLocation W14970078951 @default.
- W1497007895 hasOpenAccess W1497007895 @default.
- W1497007895 hasPrimaryLocation W14970078951 @default.
- W1497007895 hasRelatedWork W1585516410 @default.
- W1497007895 hasRelatedWork W1966969176 @default.
- W1497007895 hasRelatedWork W1976871677 @default.
- W1497007895 hasRelatedWork W1995618392 @default.
- W1497007895 hasRelatedWork W2050402774 @default.
- W1497007895 hasRelatedWork W2091872895 @default.
- W1497007895 hasRelatedWork W2097463865 @default.
- W1497007895 hasRelatedWork W2099627123 @default.
- W1497007895 hasRelatedWork W2131608588 @default.
- W1497007895 hasRelatedWork W2168720699 @default.
- W1497007895 hasRelatedWork W2336113607 @default.
- W1497007895 hasRelatedWork W2478994808 @default.
- W1497007895 hasRelatedWork W2755758726 @default.
- W1497007895 hasRelatedWork W2763485076 @default.
- W1497007895 hasRelatedWork W2774796280 @default.
- W1497007895 hasRelatedWork W2782724893 @default.
- W1497007895 hasRelatedWork W2790049117 @default.
- W1497007895 hasRelatedWork W2790340873 @default.
- W1497007895 hasRelatedWork W3031841600 @default.
- W1497007895 hasRelatedWork W3104686881 @default.
- W1497007895 isParatext "false" @default.
- W1497007895 isRetracted "false" @default.
- W1497007895 magId "1497007895" @default.
- W1497007895 workType "book-chapter" @default.